PARTE GENERALE

Introduzione .. 4

Scopo ... 4

Campo di applicazione .. 4

Definizioni .. 5

Istruzioni per l’uso ... 5

Locali .. 6

Descrizione delle strutture ed organizzazione ... 6
 * Ambiente di produzione .. 6
 * Il laboratorio di gelateria .. 7

Procedure di pulizia e disinfezione dei locali ... 11
 * Mezzi e materiali per la pulizia.. 13

Procedure di disinfestazione .. 13
 * Prevenzione dell’infestazione (esterno degli edifici) ... 14
 * Eliminazione dei rifugi (interno degli edifici) .. 14
 * Programma di disinfestazione .. 15

Manutenzione dei locali ... 15

Attrezzature e strumenti .. 15
 * Materiale e superfici ... 16
 * Disegno igienico .. 16
 * Installazione .. 17

Descrizione delle attrezzature .. 17

Procedure di pulizia e disinfezione di attrezzature e strumenti 18

Manutenzione ... 20

Produzione .. 27

Approvvigionamento materie prime ... 28
 * Il cartello generale degli ingredienti .. 30
 * Ricevimento delle materie prime ... 31

Deposito ... 31
Stoccaggio delle materie prime .. 31

Ciclo produttivo e distributivo .. 33
 Bilanciatura della ricetta .. 33
 Dosaggio degli ingredienti .. 35
 Miscelazione ... 36
 Pastorizzazione ... 37
 Maturazione ... 39
 Processo di congelamento (Mantecazione) 40
 Indurimento ... 43
 Conservazione del prodotto finito .. 43
 Vendita .. 44

Rifiuti e residui di lavorazione .. 45

Approvvigionamento delle acque .. 46

Personale .. 46
 Igiene della persona .. 46
 Disposizioni di legge .. 47
 Igiene della persona .. 47

Formazione .. 48

PARTE SPECIALE ... 49

Linee guida per la stesura dei piani di autocontrollo 49

Costituzione del gruppo .. 49

Descrizione dei prodotti e loro destinazione 50
 Caratteristiche del gelato .. 51
 Etichettatura dei prodotti .. 51
 Identificare la destinazione d’uso .. 51

Diagramma di flusso e descrizioni delle fasi del processo 52
 Costruire il diagramma di flusso .. 52
 Verifica del diagramma di flusso .. 52

Individuazione dei pericoli .. 55
 Origini delle principali infezioni alimentari 57
 Valutazione dell’indice di pericolosità 61

Individuazione dei punti di controllo critici 62

Monitoraggio .. 69
 Stabilire i limiti critici per ogni CCP 69
 Stabilire un sistema di monitoraggio per ogni CCP 69
 Esempi di moduli per la raccolta dei dati del monitoraggio 70
Azioni correttive .. 77

Procedure di verifica .. 77
 Verifica dei CCP .. 77
 Qualifica della tappa di un processo ... 78
 Verifica del piano HACCP ... 79

Gestione prodotti non idonei .. 80
 Procedura di rintracciabilità .. 80

Gestione della documentazione .. 81
 Definire i dati da conservare e la documentazione .. 81
 Caratteristiche delle procedure ... 81
 Caratteristiche delle istruzioni ... 85
 Caratteristiche dei moduli di registrazione .. 86

Normativa di riferimento .. 87

Esempi di procedure HACCP ... 88
 Produzione del gelato a base di latte .. 89
 Produzione del sorbetto di frutta ... 102
 Produzione del semifreddo all’italiana ... 109

.. Errore. Il segnalibro non è definito.

Allegato I .. 115
 Questionario di autovalutazione della conformità del laboratorio di gelateria ai requisiti strutturali richiesti. ... 115

Allegato II .. 124
 Corrispondenza tra i requisiti riportati nell’allegato del D.L. n.155 e le azioni applicabili in un laboratorio di gelateria artigianale. 124

Bibliografia .. 138
PARTE GENERALE

Introduzione
Il Decreto Legislativo n. 155 del 26 maggio 1997 (attuazione della direttiva comunitaria 93/43/CEE del 14 giugno 1993) impone alle imprese del settore alimentare di individuare, nelle loro attività, ogni fase che potrebbe rivelarsi critica per la sicurezza degli alimenti e garantire che siano individuate, applicate, mantenute e aggiornate le opportune procedure di sicurezza avvalendosi dei principi della metodologia HACCP (Analisi dei pericoli e metodologia dei punti di controllo critici).
Il decreto, inoltre, incoraggia l’elaborazione di manuali in materia di corretta prassi igienica, che possono essere utilizzati su base volontaria per uniformarsi alle esigenze contenute nell’articolo 3 dello stesso (Il responsabile dell’industria deve garantire che la preparazione, la trasformazione, la fabbricazione, il confezionamento, il deposito, il trasporto, la distribuzione, la manipolazione, la vendita o la fornitura, compresa la somministrazione dei prodotti alimentari siano effettuati in modo igienico).

Scopo
Il Manuale è un documento di applicazione volontaria concepito per aiutare chi lavora nel settore della gelateria artigianale a rispettare i requisiti richiesti dal Decreto Legislativo n. 155.
Partendo dall’analisi dei pericoli condotta specificatamente per il settore della gelateria artigianale esso permette di individuare i mezzi tecnici e gli elementi di sorveglianza necessari e sufficienti a garantire le esigenze regolamentari.
In particolare viene spiegato come ricercare i potenziali pericoli di tipo igienico nelle produzioni e come attuare i diversi mezzi di controllo e gli elementi di verifica per la prevenzione, l’eliminazione o la riduzione di questi potenziali pericoli.
Mediante gli esempi di procedure HACCP si sono approfondite le problematiche specifiche inerenti alla produzione del gelato artigianale a base di latte, del sorbetto alla frutta e della produzione dei semifreddi.
In allegato sono riportati due strumenti pratici per aiutare il gelatiere a conoscere e rispettare quanto richiesto dal Decreto Legislativo n. 155.

Campo di applicazione
Il manuale è destinato a tutte le realtà produttive a carattere artigianale del settore del gelato che effettuano la somministrazione diretta al consumatore finale. Pur rispettando
le peculiarità del settore è stato possibile creare uno strumento pratico adattabile alle diverse caratteristiche organizzative e gestionali. L’analisi dei pericoli e la metodologia dei punti di controllo critici riguardano tutte le fasi della produzione, dalle materie prime fino alla distribuzione e vendita dei prodotti finiti. Le linee guida per la stesura del piano di autocontrollo aiuteranno ad applicare nelle singole realtà produttive quanto richiesto nelle direttive comunitarie per la sicurezza igienica dei prodotti alimentari.

Definizioni

Azione di controllo: azione o attività che può essere intrapresa al fine di prevenire, eliminare o ridurre a livello accettabile un pericolo relativo alla sicurezza igienica degli alimenti.

GMP (Good Practices Manufacturing): regole che descrivono i metodi, le attrezzature, i mezzi e la gestione delle produzioni alimentari per assicurare la sicurezza igienica degli alimenti. In questo manuale si considerano le GMP relativamente alle azioni messe in atto per prevenire i pericoli derivanti dalla manipolazione del personale ed assicurare l’igiene dei prodotti.

Gravità: gravità di un pericolo. Corrisponde ad una stima “ponderale” del pericolo che un determinato agente (sia esso microbico, chimico o fisico) può possedere e che conseguentemente può manifestarsi nei confronti di un potenziale consumatore.

Limite critico: Un valore che delimita l’accettabilità dall’inaccettabilità.

Monitoraggio: La conduzione di una sequenza programmatà di osservazioni o misure di un parametro di controllo al fine di garantire che un CCP sia tenuto sotto controllo.

Pericolo: un agente o condizione biologica, chimica o fisica in grado di provocare danno.

Punto di controllo critico (Critical Control Point): una tappa in corrispondenza della quale il controllo è essenziale per prevenire, eliminare o ridurre a livelli accettabili un pericolo legato alla sicurezza degli alimenti.

Registrazione: Tutte le operazioni svolte al fine di conservare traccia scritta di quanto si è fatto durante l’applicazione del piano HACCP al processo di trasformazione di un alimento.

Rischio: stima della probabilità di comparsa di un pericolo.

Semilavorato: preparato destinato alla produzione del gelato ma non al consumo diretto.

Tappa: Un punto, una procedura, un’operazione o uno stadio del processo di trasformazione alimentare.

Verifica: L’uso di metodi, procedure o prove, in aggiunta a quelli applicati durante il monitoraggio, per valutare se la metodologia HACCP è in accordo con il piano HACCP, e/o se il piano HACCP necessita di correzioni e di riqualificazioni.

Istruzioni per l’uso

Il manuale è diviso in due parti, una parte generale e l’altra definita speciale.
Nella prima sono riportati i riferimenti e le informazioni necessarie alla conoscenza e quindi applicazione delle nozioni di igiene fondamentali per chi produce alimenti. I riferimenti normativi generali e specifici sono evidenziati all’interno dei riquadri. Da queste informazioni il gelatiere artigiano può definire le proprie GMP per la prevenzione dei pericoli igienici nella produzione di gelateria. Questa parte comprende anche la descrizione dei processi di produzione, comprensiva di alcune considerazioni sulle possibili fonti di contaminazione rilevate durante la preparazione dei prodotti della gelateria.

Nella seconda parte speciale si forniscono nozioni sulla metodologia HACCP applicata al settore delle gelaterie artigiane; nei riquadri sono evidenziati i contenuti del documento FAO/WHO di riferimento. I risultati pratici di questa applicazione sono illustrati negli esempi di procedure HACCP, necessarie alla comprensione del metodo e direttamente applicabili per l’adozione di un proprio autocontrollo aziendale.

Gli esempi di procedure HACCP sono illustrati sottoforma di schede riassuntive per tre tipologie di prodotti tipici del settore artigianale della gelateria, ovvero il gelato a base di latte, il sorbetto alla frutta e il semifreddo. Sono considerati come requisiti minimi da applicare per un sistema di autocontrollo i contenuti degli schemi n.1 e i riferimenti contenuti nei piani HACCP relativi.

Le indicazioni generali sui principi di igiene da adottare e sulla sorveglianza dei punti di controllo critici sono applicabili in generale anche agli altri prodotti del settore che utilizzano in linea di massima le medesime materie prime e tecnologie di produzione simili.

Locali

Descrizione delle strutture ed organizzazione

Ambiente di produzione e somministrazione

L’ambiente di produzione e somministrazione del gelato artigianale possiede caratteristiche variabili a seconda della produzione, numero di personale addetto e dalle macchine impiegate.

E’ evidente che i luoghi di preparazione e conservazione sono quelli che devono essere tenuti in magior considerazione dal punto di vista di una corretta gestione. Minori problematiche presentano le caratteristiche degli ambienti per la consumazione dei prodotti di gelateria che in ogni caso devono sottostare alle regole generali di prassi igienica. In ogni caso i requisiti richiesti per gli ambienti sono descritti nell'Allegato II. Ogni laboratorio dovrebbe adeguare gli spazi disponibili alle attrezzature utilizzate, in maniera da rendere agevoli le operazioni di produzione, tenendo in considerazione anche il numero di persone che lavorano.

Le prescrizioni di legge richiedono che la progettazione, la costruzione e le dimensioni dei locali nei quali si trovano prodotti alimentari devono: consentire una corretta prassi igienica impedendo anche la contaminazione crociata tra prodotti alimentari,
Il laboratorio di gelateria

E’ riportata a titolo di esempio la dislocazione degli impianti di due tipologie di laboratori di produzione, distinti a seconda delle capacità produttive.

La disposizione delle attrezzature è stata concepita in modo tale da rispettare un flusso logico nella preparazione dei prodotti della gelateria artigianale. A partire dalla conservazione delle materie prime si passa al loro dosaggio e miscelazione fino alla pastorizzazione, maturazione e mantecatura attraverso un percorso atto a prevenire pericolose contaminazioni crociate tra prodotti contaminati e prodotti già bonificati dal trattamento termico.

Ci si prefigge di essere utili ai gelatieri artigiani che avessero l’intenzione di ridimensionare o trasformare il loro laboratorio di gelateria, illustrando alcune possibilità di installazioni razionali, pur sapendo che ciò avrà un valore solamente indicativo.

Il gelatiero artigiano dovrà anzitutto adattare i suoi impianti ai locali esistenti: ciò costituisce di per sé una prima grande limitazione. In secondo luogo bisognerebbe conoscere nel dettaglio ogni esigenza per poter dare suggerimenti mirati, tenendo conto dei bisogni e degli obiettivi dell’azienda ed essere in grado di soddisfare un eventuale sviluppo futuro; altro fattore da non trascurare è la disponibilità finanziaria dell’artigiano.

Vengono descritte due aziende con capacità e programma operativo diversi:

1. piccolo laboratorio di gelateria con produzione di circa 100 - 120 litri di gelato al giorno e pasticceria semifredda.
2. laboratorio artigianale di grande produzione di circa 500 -700 litri di gelato al giorno e pasticceria semifredda.

La descrizione è limitata al solo locale di produzione, considerato che l’area destinata alla somministrazione non è da considerare rilevante sotto l’aspetto della tecnologia di produzione. La migliore disposizione delle aree è in sequenza lineare, ma ovviamente per motivi di contenere gli spazi a disposizione sono considerati solamente i percorsi dei prodotti ad U. La sequenza lineare delle operazioni può ottimizzare i flussi di prodotti e diminuire il pericolo di contaminazioni crociate.

Le prescrizioni generali prevedono che un laboratorio di gelateria deve avere le pareti lavabili fino all’altezza di m 1,80 e la pavimentazione leggermente in pendenza verso un canale di raccolta delle acque, ricoperto con griglia in materiale inossidabile. Ciò faciliterà la frequente pulizia delle attrezzature, dei tavoli da lavoro, del pavimento stesso per mezzo di un idrante.
LABORATORIO A

1. Nelle vicinanze dell’ingresso è situata una cella frigorifera a temperatura positiva per la conservazione delle materie prime di fornitura giornaliera (latte, panna, burro, uova, frutta fresca, ecc.)

2. Per il dosaggio delle miscele si dispone di un tavolo con cassettiera dove saranno posti tutti gli utensili minuti. Sotto questo tavolo “da dosaggio”, si posizionano tre tramogge su ruote che dovranno contenere il saccarosio, il destrosio, il latte in polvere. Al di sopra di questo tavolo è collocato un mobile pensile per la
conservazione delle rimanenti materie prime (cacao, paste aromatizzanti varie, stabilizzanti, liquori, aromi, ecc.).

3. Sul tavolo di dosaggio è collocata una bilancia.

4. Nell’immediata vicinanza del tavolo di dosaggio è posizionato un lavello in acciaio inossidabile a due vasche, fornito di rubinetto azionabile “a gomito” oppure “a pedale”, con acqua calda e fredda. Vicino al lavello è collocato il box porta-rifiuti

5. Contiguo al lavello è disposto un tavolo da lavoro con fornello a gas e una planetaria battiuova da tavolo. Questo tavolo sarà destinato principalmente alla produzione dei semifreddi e dotato quindi di un montapanna da laboratorio.

6. Attiguo al tavolo è sistemato un pastorizzatore da 60 litri e successivamente un maturatore della stessa capacità.

7. A fianco del maturatore è posizionato il mantecatore della capacità di 6 litri circa.

8. Per completare la disposizione delle attrezzature per il ciclo produttivo, si posiziona una cella (o un armadio frigorifero) di indurimento e conservazione a -20 °C/-22 °C della capacità minima di 700 litri.

Si tratta di un laboratorio simile a quello precedentemente illustrato sotto l’aspetto della superficie, ma con una capacità produttiva maggiore. Questo rispecchia in parte la difficoltà di poter disporre, soprattutto nei centri urbani delle vecchie città, di locali unici di superficie notevole.

1. Attigua all’entrata è posizionata la cella a temperatura positiva per la conservazione delle materie prime da fornitura giornaliera (latte, panna, burro, uova, frutta fresca, ecc.).

2. Il tavolo da lavoro fornito di tramogge montate su ruote per contenere il saccarosio, destrosio, latte in polvere ecc. è situato subito dopo la cella. Sul tavolo si trova una
bilancia per il dosaggio delle materie prime. Al di sopra del tavolo è predisposto un mobile pensile dove troveranno posto tutte quelle materie prime e semilavorati di dimensioni limitate (paste aromatizzanti, neutri, aromi, liquori, vini, ecc.).

3. Successivamente è montato un lavello a 2 vasche con gocciolatoio, fornito di acqua calda e fredda con rubinetteria azionabile “a gomito” o “a pedale”.

4. Adiacente al lavello è posizionata una lavautensili fornita di un carrello in acciaio inox su ruote da usare come gocciolatoio.

5. Procedendo in senso orario si trova un cuocicrema per la cottura della crema pasticcera e successivamente una planetaria battiuvva.

6. Nel tavolo da lavoro per semifreddi, fornito di ripiani sottostanti dove troveranno posto gli stampi per semifreddi, è posizionato un montapanna automatico e un fornello a gas con 2 fuochi.

7. Sullo stesso tavolo, in sequenza, si trova quindi un mantecatore verticale per lavorazioni particolari di gelato mantecato.

8. Lungo tutta la parete c’è una mensola in acciaio inox per riporre strumenti o altri accessori utili al confezionamento dei semifreddi.

9. Un’altra parete è predisposta per la preparazione del gelato mantecato, mediante l’utilizzo di un pastorizzatore da 120 litri, cui seguono tre maturatori da 60 litri ciascuno.

10. Nelle immediate vicinanze non deve mancare un lavello lavamani fornito di dispenser di sapone liquido e salviette asciugamani di carta.

11. Affiancati si trovano poi 2 mantecatori orizzontali rispettivamente di 8 e 12 litri di capienza.

12. Al di sotto delle attrezzature per la produzione del gelato, la griglia a pavimento ha lo scopo di raccogliere le acque di lavaggio delle attrezzature stesse.

13. Di seguito si trova un abbattitore di temperatura a -40 °C e la cella di conservazione a -18 °C. Questa cella a misura d’uomo, oltre ad avere una sua porta d’ingresso (protetta all’interno da una tenda di plastica per evitare eccessive perdite di freddo durante l’apertura e la chiusura), è munita di un finestrino che serve ad introdurre i prodotti evitando frequenti aperture della porta grande.

14. Al centro della stanza è posizionato un tavolo di dosaggio con mensola ad alzata (per alloggiare attrezzature minute, materiali di decorazione, ecc.), dove si effettueranno decorazioni per torte semifredde ed altre lavorazioni attinenti.

Le attrezzature per la preparazione dei semifreddi sono dislocate in una zona ben precisa, allo scopo di gestire nel migliore dei modi quegli ingredienti e i prodotti che non subiscono un trattamento termico di risanamento.

E’ chiaro che sarà poi l’applicazione di una corretta prassi igienica a permettere il mantenimento e l’osservanza delle condizioni di produzione adeguate.

Procedure di pulizia e disinfezione dei locali

Decreto Legislativo n° 155 del 26/05/1997
Le procedure di pulizia e disinfezione dei locali, denominate anche sanificazione sono date dall’insieme di attività che tendono ad eliminare dalle superfici i germi patogeni ed abbassare la carica microbica a livelli di sicurezza, in grado cioè di non compromettere la conservabilità di un alimento.

I residui organici derivati dalle lavorazioni rappresentano un terreno di crescita per i batteri; tale crescita è influenzata dai fattori tempo-temperatura. Nei mesi invernali o nei locali condizionati la bassa temperatura rallenta la crescita batterica, mentre nei mesi estivi, in locali non condizionati, l’elevata temperatura può favorire tale crescita. Per questo motivo le procedure per la sanificazione possono essere diversificate a seconda della temperatura ambiente ottenendo risultati sovrapponibili e un vantaggio economico. Le procedure individuate devono essere adattate in relazione alle esigenze igieniche dei diversi locali. Ad esempio il locale di lavorazione o laboratorio deve essere pulito giornalmente in quanto è considerato un ambiente ove possono manifestarsi pericolo consistente per i prodotti. La pulizia del magazzino invece dovrà essere effettuata con minor frequenza, a meno di rilevarne la necessità, e la sua esecuzione è possibile solo dopo lo svuotamento.

Magazzino: la pulizia ordinaria consiste nell’attuare l’asportazione di polvere, ragnatele, residui delle materie prime e nell’effettuare piccoli interventi disinfezanti secondo cadenze settimanali. L’applicazione di una disinfezione completa e di una pulizia che comprende la detersione e la disinfezione può essere possibile solamente allo svuotamento del locale, ed è quindi da prevedere a cadenze fisse.

E’ utile predisporre anche dei calendari di pulizia, sia per la registrazione dell’attività svolta, sia per facilitare la corretta applicazione di quanto definito. Si riporta un esempio di frequenza di applicazione delle procedure di pulizia per diversi aspetti di un laboratorio di gelateria.

<table>
<thead>
<tr>
<th></th>
<th>Produzione</th>
<th>Vendita</th>
<th>Servizi</th>
<th>Magazzino</th>
<th>Cella</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavimenti</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Pareti, Finestre</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>(M)</td>
<td>(M)</td>
</tr>
</tbody>
</table>
In genere è utile dedicare un giorno della settimana alla pulizia generale del laboratorio, sfruttando magari il turno di chiusura. Per le attività a cadenza mensile possono essere predisposti dei calendari riportati come Schede tecniche nel capitolo 12.

Mezzi e materiali per la pulizia
I mezzi adoperati per la pulizia devono essere se possibile monouso, utilizzando ad esempio le bobine di carta.
Bisogna evitare di utilizzare panni e canovacci usurati e sporchi per asciugare impianti, attrezzature e utensili vari.
I materiali di comune impiego per la pulizia delle superfici sono utilizzati tal quali o previa diluizione in acqua calda.
Devono essere definite le procedure di pulizia di ambienti, impianti ed attrezzature che possono influenzare direttamente la salubrità dei prodotti.
La corretta applicazione delle operazioni da svolgere può essere facilitata dalla predisposizione di semplici istruzioni relative, ad esempio, ai singoli impianti, e verificata attraverso l’analisi microbiologica delle superfici pulite mediante tamponi; la frequenza di questa verifica è stabilita in base alla stessa affidabilità della procedura applicata.
Nelle aziende di medie e grandi dimensioni possono essere preparate delle check-list per verificare l’effettiva applicazione delle istruzioni di sanificazione.

Procedure di disinfestazione

Decreto del Presidente della Repubblica n° 327 del 26/03/1980
Art. 28 - L'autorità sanitaria deve inoltre accertare che i predetti locali siano muniti di dispositivi idonei ad evitare la presenza di roditori, ed altri animali od insetti
Art. 35 - Mezzi di lotta contro gli insetti e gli animali nocivi.
Nei locali di cui all'art. 2, lettera a), del presente regolamento debbono essere attuati efficaci mezzi di lotta e di precauzione contro gli insetti, i roditori ed altri animali nocivi. Tali mezzi non devono costituire pericolo di danno anche indiretto per l'uomo, a causa di contaminazione delle sostanze alimentari.

Decreto Legislativo n° 155 del 26/05/1997
Attuazione delle direttive 93/43/CEE e 96/3/CE concernenti l’igiene dei prodotti alimentari.
Allegato, Capitolo I: Requisiti generali per i locali
Lo schema, la progettazione, la costruzione e le dimensioni dei locali nei quali si trovano prodotti alimentari devono: consentire una corretta prassi igienica impedendo anche la contaminazione crociata, durante le operazioni, fra prodotti alimentari, apparecchiatura, materiali, acqua, ricambio d'aria o interventi del personale ed escludendo agenti esterni di contaminazione quali insetti e altri animali nocivi.

Gli animali infestanti costituiscono una notevole minaccia per la sicurezza e l’igiene degli alimenti in quanto veicoli potenziali di pericoli biologici in grado di contaminare i prodotti finiti e le materie prime.

Un’infestazione può avvenire più facilmente nei luoghi adatti alla riproduzione e fonti di nutrimento, per cui devono essere applicate le pratiche generali di igiene che consentano di evitare la creazione di un ambiente favorevole allo sviluppo di infestanti.

E’ necessario, inoltre, attuare un’azione preventiva sull’ingresso nei laboratori di animali dall’esterno e per eliminare quelli che si trovano all’interno dei locali di produzione.

Per instaurare un efficace sistema di prevenzione e sorveglianza sulla presenza di infestanti è necessario conoscere le caratteristiche e abitudini alimentari, considerando tra gli infestanti più dannosi i seguenti:

- roditori (topi, ratti, ecc.);
- insetti striscianti (blatte, blattelle, ragni, ecc.);
- insetti volanti (mosche, lepidotteri, coleotteri, ecc.);
- volatili;
- altri mammiferi domestici (cani, gatti, ecc.).

Prevenzione dell’infestazione (esterno degli edifici)

Gli edifici devono essere tenuti in buono stato di manutenzione in modo da prevenire l’accesso degli animali ed eliminare i potenziali luoghi di rifugio e riproduzione.

Fori, canalizzazioni ed altri potenziali vie di accesso devono essere sigillate, ed inoltre, devono essere adottate le seguenti misure:

1. le porte verso l’esterno devono essere a tenuta e possibilmente a chiusura automatica.
 Ove ciò non è possibile è necessario apporre indicazioni sull’obbligo di mantenerle chiuse;
2. le finestre apribili verso l’esterno devono essere munite di una rete protettiva, rimovibile e lavabile;
3. le aperture esterne di condotte e tubazioni devono essere protette per impedire l’ingresso di animali infestanti.

Eliminazione dei rifugi (interno degli edifici)

Devono essere eliminate le potenziali sedi di rifugi quali crepe e buchi nei muri e nei pavimenti, impianti e materiali inutilizzati e obsoleti. Altri elementi quali cavi elettrici e i punti di passaggio delle tubazioni e cavi esterni da un locale all’altro devono essere a tenuta. Le giunzioni tra pareti e rivestimenti di piastrelle in ceramica o profilati plastici/metallici devono essere realizzate in materiale duro; inoltre non devono presentare superfici orizzontali che possano offrire alloggio a polvere o sporco, e consentire una via di trasferimento per gli infestanti. I davanzali delle finestre devono
essere adeguatamente inclinati verso l’interno del laboratorio. Il passaggio di tubazioni a soffitto o sulle pareti deve essere possibilmente evitato, mentre devono essere sigillate le entrate e le uscite delle stesse dai muri.

Programma di disinfestazione
Gli animali infestanti costituiscono una minaccia per la sicurezza e l’igiene degli alimenti. Le pratiche generali di igiene e manutenzione di ambienti ed impianti, le azioni volte a prevenire l’ingresso degli animali dall’esterno e quelle per la loro rapida eliminazione costituiscono il programma da adottare a fronte del pericolo di infestanti. Attraverso l’attuazione di un monitoraggio continuo il gelatiere ha la possibilità di prevenire l’insorgenza di tale pericolo.
I principali punti costituenti un programma di disinfestazione devono prevedere le seguenti azioni:

- le vie d’ingresso come porte, finestre, fori, canalizzazioni, sifoni e scarichi devono essere protette da una possibile intrusione;
- all’interno degli edifici devono essere eliminate o controllate tutte le potenziali sedi di rifugio (crepe e fessure nei muri e nei pavimenti, vani nascosti degli impianti e quadri elettrici);
- si deve attuare un programma di intervento, effettuato dall’azienda stessa o da una azienda esterna (iscritta allo speciale registro come previsto dalla legge del 25 gennaio 1994 n. 82) che comprenda la frequenza dei sopralluoghi, le caratteristiche delle esche utilizzate (schede tecniche dei prodotti) e la loro dislocazione a seconda della planimetria del laboratorio;
- per ultimo è necessaria la compilazione di una relazione periodica sui risultati del monitoraggio, il tipo di trattamento effettuato e le eventuali modifiche apportate.

Manutenzione dei locali
Deve essere tenuta sotto controllo continuo l’integrità di pavimenti, pareti e soffitti di tutti i locali e soprattutto del locale di produzione. Le piastrelle rotte o danneggiate vanno sostituite, mentre si devono evitare desquamazioni delle pitture e dei rivestimenti dei soffitti mediante interventi periodici da effettuarsi possibilmente nei periodi di chiusura del laboratorio. Questi interventi devono avere una frequenza fissata a seconda delle peculiarità degli ambienti e dei materiali impiegati, e devono essere registrati.

Attrezzature e strumenti

<table>
<thead>
<tr>
<th>Legge 30 aprile 1962, n. 283.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L'articolo 11 detta le disposizioni riguardanti i recipienti, gli utensili, e le apparecchiature che possono venire a contatto diretto con sostanze alimentari.</td>
</tr>
</tbody>
</table>

| Decreto Ministeriale 21 marzo 1973 e successive modifiche. |
In particolare gli articoli 36 - 37 stabiliscono i requisiti degli oggetti in acciaio inossidabile destinati a venire in contatto con alimenti.

Decreto del Presidente della Repubblica 26 marzo 1980, n. 327.
L’articolo 28 stabilisce che "gli stabilimenti ed i laboratori devono inoltre essere provvisti di impianti, attrezzature ed utensili riconosciuti idonei sotto il profilo igienico-sanitario e costruiti in modo da consentire la facile, rapida e completa pulizia". L'articolo 68 obbliga le imprese che producono oggetti destinati a venire a contatto con sostanze alimentari di controllare la rispondenza degli stessi alle rispettive disposizioni sanitarie.

Decreto del Presidente della Repubblica 23 agosto 1982 n.777
Attuazione della direttiva 76/893/CEE relativa ai materiali e gli oggetti destinati a venire a contatto con i prodotti alimentari

Le condizioni igieniche di un prodotto dipendono, oltre che dalla materia prima e dalla modalità di lavorazione, anche dalle caratteristiche delle attrezzature. La sistematica asportazione dei residui alimentari generati durante la lavorazione rappresenta una forma di prevenzione verso il rischio di contaminazione e di sviluppo microbico. Pertanto le attrezzature e gli impianti devono essere costruiti rispettando alcuni requisiti fondamentali: tipo di materiale impiegato, disegno igienico, modalità di installazione.

Materiale e superfici
Il materiale impiegato deve garantire l’assenza di cessioni da parte degli stessi macchinari: il principio della non contaminazione della sostanza alimentare da parte di qualsiasi oggetto che ne viene a contatto ha trovato già da anni riconoscimento nell’ordinamento giuridico italiano.
Le superfici a contatto con l’alimento devono essere possibilmente in acciaio inox serie AISI 300 e non in alluminio (massima porosità, attaccabile dai prodotti di sanificazione con fenomeni di cessione).
Tutte le superfici a contatto con alimenti devono essere costruite con materiale inerte e compatibile (lisce e non porose).
Le superfici esterne, se rivestite, devono avere il rivestimento aderente.

Disegno igienico
Le attrezzature e gli impianti devono essere facilmente controllabili mediante ispezione visiva in ogni loro parte, così da poter verificare l’efficacia delle operazioni di pulizia.
La progettazione deve evitare la presenza di punti morti o zone poco accessibili.
Il design deve permettere “la facile, rapida e completa pulizia”:

<table>
<thead>
<tr>
<th>Materiale e superfici</th>
<th>Disegno igienico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il materiale impiegato deve garantire l’assenza di cessioni da parte degli stessi macchinari: il principio della non contaminazione della sostanza alimentare da parte di qualsiasi oggetto che ne viene a contatto ha trovato già da anni riconoscimento nell’ordinamento giuridico italiano.</td>
<td>Le attrezzature e gli impianti devono essere facilmente controllabili mediante ispezione visiva in ogni loro parte, così da poter verificare l’efficacia delle operazioni di pulizia.</td>
</tr>
<tr>
<td>Le superfici a contatto con l’alimento devono essere possibilmente in acciaio inox serie AISI 300 e non in alluminio (massima porosità, attaccabile dai prodotti di sanificazione con fenomeni di cessione).</td>
<td>La progettazione deve evitare la presenza di punti morti o zone poco accessibili.</td>
</tr>
<tr>
<td>Tutte le superfici a contatto con alimenti devono essere costruite con materiale inerte e compatibile (lisce e non porose).</td>
<td>Il design deve permettere “la facile, rapida e completa pulizia”:</td>
</tr>
<tr>
<td>Le superfici esterne, se rivestite, devono avere il rivestimento aderente.</td>
<td></td>
</tr>
</tbody>
</table>
• **facile**: facilmente smontabile per permettere la rimozione dello sporco anche da particolari punti in cui si possono annidare microrganismi;
• **rapida**: le operazioni di sanificazione devono potersi svolgere rapidamente;
• **completa**: deve essere accessibile alle operazioni di detersione e disinfezione in tutte le sue parti (visibili e non);

Inoltre possono essere utili anche le seguenti considerazioni:
• il disegno di costruzione deve prevedere sagome a curve e non a spigoli;
• le parti esterne delle attrezzature devono essere tali da minimizzare l’accumulo di sporcizia;
• l’aggancio dei vari pezzi deve essere fatto con morsetti che facilitino lo smontaggio (banditi i bulloni);
• le guarnizioni devono essere rimovibili;
• le superfici di giunzione permanentemente a contatto con l’alimento devono essere saldate (e non imbullonate) in modo tale che le saldature siano in continuo (e non a punti) e poi levigate;
• tutti gli angoli interni su superfici a contatto con il prodotto devono avere raggi minimi di 1/4 di pollice;
• gli agitatori verticali devono avere un dispositivo per evitare la fuoriuscita o l’entrata di polvere, olio ecc..

Installazione

Alcune considerazioni possono essere utili durante l'installazione di un impianto nel laboratorio di gelateria:
• rendere le attrezzature accessibili da tutti i lati;
• installare gli impianti sollevati da terra così da permettere la completa pulizia del pavimento sottostante (preferibili impianti premontati su pedana);
• le attrezzature devono essere collegate in modo che il processo abbia, per quanto possibile, uno sviluppo lineare senza incroci e ritorni dei flussi.

Descrizione delle attrezzature

Le attrezzature presenti in un laboratorio di gelateria sono state indicate nella descrizione degli ambienti di lavoro delle pagine 5, 6 e 7. Un elenco di tali strumenti è di seguito riportato.
• Frigorifero o cella a temperature positive per la conservazione delle materie prime
• Cella di congelamento
• Abbattitore di temperatura
• Banco per l’esposizione e vendita di gelato
• Vetrine di esposizione di torte gelato e semifreddi
• Pastorizzatore
• Maturatore
• Mantecatore
• Bilancia
• Planetaria
• Cuocicrema
• Montapanna
• Cucina
• Lavautensili
• Tavoli da lavoro
• Mensole in acciaio inox
• Lavello a due vasche
• Tramogge varie
• Contenitori rifiuti
• Sorbettiere
• Contenitori vari
• Utensili vari

In questo elenco sono compresi semplici strumenti per la miscelazione, la pesatura, i trasferimenti di materie prime e miscele ed anche complesse attrezzature che combinano in uno stesso impianto diverse funzioni. La sorveglianza ed il buon funzionamento di tutte queste sono a carico del gelatiere che deve prevedere per ogni attrezzatura le modalità di pulizia e manutenzione, considerando chiaramente la complessità delle operazioni da svolgere.

Procedure di pulizia e disinfezione di attrezzature e strumenti

Per gli impianti è bene attenersi alle prescrizioni riportate nei manuali d’uso, mentre per la disinfezione delle attrezzature si deve detergere e disinfettare gli utensili dopo il loro utilizzo.

Ricordiamo che i prodotti per la pulizia e disinfezione esplicano la loro azione in base ad alcuni parametri, tra i quali:
◊ natura e quantità di sporco da eliminare,
◊ temperatura di utilizzo,
◊ concentrazione,
◊ tempo di contatto,
◊ sensibilità a sostanze esterne,
◊ metodo di utilizzo.

La pulizia degli impianti deve essere effettuata dopo il loro utilizzo; per gli impianti che non vengono utilizzati ogni giorno è utile effettuare prima della lavorazione un risciacquo delle parti che vanno a contatto con il prodotto. E’ fondamentale innanzitutto seguire le indicazioni dei costruttori sulle modalità di svolgimento della pulizia e sui prodotti da utilizzare.

Le operazioni da svolgere possono seguire queste indicazioni generali.
◊ Iniziare la pulizia immediatamente al termine del lavoro.
◊ Ispezionare le parti smontabili degli impianti, verificare lo stato delle guarnizioni, detergere e disinfettare a mano con spazzole pulite.
Risciacquare abbondantemente con acqua calda (45 - 60°C).
Pulire con soluzione detergente alcalina alla concentrazione consigliata ed alla temperatura di 55 - 65°C e per i tempi previsti dal costruttore.
Sciacquare ed eventualmente procedere con la detersione acida, per la rimozione delle concrezioni minerali.
Sciacquare, disinfettare con vapore o per mezzo di un disinfectante chimico in soluzione con acqua fredda.
Se si utilizza un disinfectante chimico, trascorso il tempo di contatto efficace, (15 - 20 minuti per i composti clorati o iodofori e 60 minuti per i sali di ammonio quaternari) scaricare e sciacquare con acqua lasciando l’impianto a secco.

Attrezzature (contenitori, spatole, cucchiai, porzionatori, fruste, utensili vari ecc.)
Le attrezzature come i contenitori, le sorbettiere devono essere sottoposti dopo lo svuotamento alla stessa procedura indicata per gli impianti; le altre devono essere risciacquate durante la giornata dopo ogni utilizzo. A fine giornata si possono applicare detergenti e/o disinfettanti a seconda delle esigenze. La pulizia dei porzionatori sul banco di vendita viene effettuata in continuo da un flusso di acqua corrente.
E’ idoneo l’utilizzo di lavastoviglie con impianto di sanificazione automatico.

In base alle indicazioni riportate è utile predisporre un programma di pulizia nel quale sono evidenziate le frequenze dell’attività svolta.

<table>
<thead>
<tr>
<th>Attrezzature</th>
<th>Produzione</th>
<th>Vendita</th>
<th>Servizi</th>
<th>Magazzino</th>
<th>Cella</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Impianti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mantecatore</td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>maturatore</td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pastorizzatore</td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>frigoriferi</td>
<td>M</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>banco vendita</td>
<td>-</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>vetrine esposizione</td>
<td>-</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Legenda: G = Giornaliera, M = Mensile, S = Settimanale. U = Dopo ogni utilizzo

Mezzi e materiali per la pulizia
I mezzi adoperati per la pulizia devono essere se possibile monouso, utilizzando ad esempio le bobine di carta.
Bisogna evitare di utilizzare panni e canovacci usurati e sporchi per asciugare impianti, attrezzature e utensili vari.
Esistono in commercio prodotti specifici per la pulizia di ogni impianto utilizzato; in genere è consigliato attenersi alle informazioni racchiuse nei libretti di istruzione.
Manutenzione

La procedura di manutenzione deve comprendere le attività che assicuri il funzionamento e le condizioni di utilizzo di impianti, attrezzature e utensili. L’attuazione di queste attività ha lo scopo di facilitare le procedure di pulizia e disinfezione, permettere il funzionamento e prevenire le contaminazioni di tipo fisico, chimico e biologico degli alimenti.

La manutenzione può essere distinta in manutenzione ordinaria e straordinaria:

- la prima interessa quelle azioni ed interventi programmati volti ad assicurare il buon funzionamento e le condizioni igieniche dell’impianto o attrezzatura,
- la seconda si riferisce alla descrizione delle attività necessarie qualora intervengano rotture o imprevisti per riportare l’impianto o l’attrezzatura nelle condizioni d’uso.

Questi due tipi di interventi devono essere registrati.
E’ necessario predisporre un elenco degli impianti e delle attrezzature utilizzate e stabilire per ognuno le attività necessarie per la manutenzione ordinaria ed eventualmente straordinaria.

La gestione delle apparecchiature deve essere mirata soprattutto a quelle apparecchiature che vengono a contatto con il prodotto per molto tempo e in condizioni favorevoli alla contaminazione e/o moltiplicazione microbica.

Sono fondamentali le notizie racchiuse nei manuali di istruzione di ogni apparecchiatura e quindi bisogna prevederne la conservazione possibilmente nei pressi dell’impianto stesso.

Per alcune di queste attrezzature si riporta un esempio delle operazioni di manutenzione e del loro utilizzo in generale.

Nella terza colonna si riportano le frequenze delle attività così definite:

<table>
<thead>
<tr>
<th>G = Giornaliera,</th>
</tr>
</thead>
<tbody>
<tr>
<td>S = Settimanale,</td>
</tr>
<tr>
<td>M = Mensile,</td>
</tr>
<tr>
<td>A = Annuale.</td>
</tr>
</tbody>
</table>

La distribuzione del freddo nei banchi da gelato avviene ad aria forzata ed è perciò fondamentale una corretta circolazione della stessa. Le modalità di circolazione dell’aria sono evidenti soprattutto nei giorni umidi notando i movimenti di una specie di nebbiolina all’interno del banco di vendita. La velocità non deve essere troppo forte altrimenti si vede il freddo che tende ad uscire dal banco e

<table>
<thead>
<tr>
<th>Impianto</th>
<th>Attività</th>
<th>Oggetto dell’attività</th>
<th>Frequenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banco per esposizione del gelato</td>
<td>La distribuzione del freddo nei banchi da gelato avviene ad aria forzata ed è perciò fondamentale una corretta circolazione della stessa. Le modalità di circolazione dell’aria sono evidenti soprattutto nei giorni umidi notando i movimenti di una specie di nebbiolina all’interno del banco di vendita. La velocità non deve essere troppo forte altrimenti si vede il freddo che tende ad uscire dal banco e</td>
<td>Circolazione aria</td>
<td></td>
</tr>
<tr>
<td>Impianto</td>
<td>Attività</td>
<td>Oggetto dell’attività</td>
<td>Frequenza</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>provoca anche un notevole appannamento del vetro frontale. La fuoriuscita del freddo è compensata dall’aspirazione di aria calda dall’altra parte del banco con conseguente aumento di lavoro del compressore ed intasamento di brina dell’ evaporatore dato dal continuo richiamo dall’esterno di aria calda ed umida. La velocità troppo bassa si nota vedendo la ”nebbia” stazionare sul banco senza avere un deciso senso di rotazione. E’ utile ricordare che la temperatura idonea del banco per l’esposizione del gelato viene raggiunta molto lentamente, pertanto è bene scegliere sempre un banco con sbrinamento a gas caldo o ad inversione di ciclo per la loro velocità di sbrinamento. Si consiglia anche di sbrinare completamente il banco almeno una o due volte alla settimana spegnendolo alla sera, anche se sono del tipo a ciclo continuo cioè del tipo in cui si lascia il gelato anche di notte. Controllare sempre dopo la fermata notturna che l’acqua di sbrinamento sia defluita dall’interno del banco. Controllare il buon funzionamento dei ventilatori interni, mettendo ogni tanto una goccia d’olio sul perno. A macchina nuova leggere il libretto delle istruzioni e conservarlo per ogni evenienza.</td>
<td>Sbrinamento</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acqua sbrinamento</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ventilatori interni</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caratteristiche costruttive</td>
<td></td>
</tr>
</tbody>
</table>

Armadio frigorifero o cella frigorifera

L’armadio frigorifero deve essere preferibilmente in acciaio inox, soprattutto le parti interne, controporta compresa. Gli angoli devono essere arrotondati per una migliore pulizia. E’ preferibile un sistema di raffreddamento interno ventilato per una migliore distribuzione del freddo, un interruttore sulla porta deve fermare le ventole interne all’apertura della stessa. Da notare che gli armadi frigo con motore posto in basso sono molto più esposti all’accumulo di polvere sul condensatore e quindi richiedono una più
<table>
<thead>
<tr>
<th>Impianto</th>
<th>Attività</th>
<th>Oggetto dell’attività</th>
<th>Frequenza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Raccoglicondensa</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sbrinamento</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulizia evaporatore</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valvola compensazione</td>
<td></td>
</tr>
</tbody>
</table>

frequente pulizia; i motori posti in alto si sporcano meno ma soffrono di più il caldo della stanza. Non sistemare mai gli armadi frigo in nicchie o stanze troppo basse dove non si possa avere un sufficiente ricambio d’aria.

Pulire e disinfettare spesso la bacinella atta a raccogliere la condensa posta sotto l’armadio, nella quale si ha acqua stagnante.

Controllare il buon funzionamento dello sbrinamento che deve durare 10 - 15 minuti per i frigoriferi destinati alla conservazione di latte e frutta, e massimo 5 - 6 minuti per il gelato.

L’evaporatore dopo lo sbrinamento deve essere perfettamente pulito: uno sbrinamento difettoso provoca una scarsa circolazione interna d’aria e si può notare anche vedendo che il compressore funziona continuamente, la temperatura non si abbassa, all’interno sull’evaporatore c’è un blocco di ghiaccio e mettendo una mano davanti all’uscita dell’aria non si sente nessuna ventilazione.

Quando si apre la porta di un armadio frigo, soprattutto se a bassa temperatura, si ha l’uscita del freddo verso il basso e l’entrata di aria calda dall’alto; quando si chiude la porta l’aria calda appena entrata si raffredda rapidamente calando di volume e questo provoca una notevole decompressione all’interno del frigorifero. Se l’apparecchio non è provvisto dell’apposita valvola di compensazione, si sente un risucchio dell’aria attraverso le guarnizioni e provando ad aprire si sente la porta come incollata, insistendo nell’aprire si rovinano le guarnizioni e sicuramente la maniglia. La valvola di compensazione, appositamente studiata per evitare questo effetto, è importantissima nei frigoriferi a bassa temperatura.

Se si deve effettuare uno sbrinamento rapido non mettere mai l’apparecchio al sole o non introdurre mai fonti di calore come stufette o simili in quanto scaldando troppo l’interno si può staccare l’isolamento dalle lamiere d’acciaio oppure un
<table>
<thead>
<tr>
<th>Impianto Attività</th>
<th>Oggetto dell’attività</th>
<th>Freqneza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calore eccessivo può far salire troppo la pressione del gas refrigerante provocando delle incrinature nell’impianto.</td>
<td>Caratteristiche strutturali</td>
<td></td>
</tr>
<tr>
<td>Al fine di evitare spiacevoli sorprese nell’acquisto di un frigorifero, per verificare che sia interamente in acciaio inox, è sufficiente appoggiare un piccolo magnete sulle pareti o in una qualsiasi parte dichiarata inox: se il magnete rimane attaccato significa che quell’acciaio contiene un’alta percentuale di ferro e con il tempo potrebbe avere problemi di ruggine. Da questa prova bisogna escludere la cornice di chiusura della porta.</td>
<td>Griglie ripiani</td>
<td></td>
</tr>
<tr>
<td>Le griglie dei ripiani dovrebbero essere in acciaio e non plastificate; queste ultime tendono ad arrugginire. Nei frigo per gelati, al posto delle griglie sarebbero preferibili i vassoi in quanto appoggiando su un tavolo una sorbettiera fredda lo sporco si attacca subito al fondo e quando viene introdotta nuovamente nell’armadio frigorifero c’è il pericolo che lo sporco vada a cadere nelle vaschette sottostanti.</td>
<td>Vassoi</td>
<td></td>
</tr>
<tr>
<td>Pulire molto spesso le guarnizioni della porta prestando particolare cura al lato posto in basso: una buona pulizia, oltre che ad evitare problemi igienici ed estetici, ne prolunga la durata e la tenuta. La sporcizia infatti, tende a renderle rigide e secca la guarnizione inibendone l’elasticità necessaria per svolgere la sua funzione. La pulizia sia dei frigoriferi che delle guarnizioni può essere fatta con acqua non molto calda e detersivi non abrasivi. Per controllare la tenuta di una guarnizione, è sufficiente chiudere la porta imprigionando una striscia di carta larga 4/5 cm. e tirandola, a porta chiusa, si verifica se la striscia di carta viene trattenuta con una certa pressione oppure no. Per una buona durata delle guarnizioni, ingrassarle con poca vaselina dove entrano in contatto con la cornice della porta, soprattutto il lato lungo verso i cardini della porta in quanto in questo punto si ha</td>
<td>Pulizia guarnizioni</td>
<td>S</td>
</tr>
<tr>
<td>Ingrassaggio guarnizioni</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Impianto Attività</td>
<td>Oggetto dell’attività</td>
<td>Frequenza</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>un maggior sfregamento. La loro perfetta tenuta è garanzia di buona conservazione dei prodotti e di risparmio energetico. Per togliere il tipico odore di nuovo, pulire con acqua tiepida e aceto. Sarebbe utile che il frigorifero avesse, al posto dei piedini posteriori, delle ruote che ne facilitasse lo spostamento favorendo così l’azione di pulizia del locale e delle apparecchiature.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantecatori elettronici</td>
<td>Pattini mescolatore</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Griglie protezione</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cinghie trasmissione</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Sicurezze</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulizia innesto mescolatore</td>
<td>S</td>
</tr>
</tbody>
</table>
conservarlo per ogni evenienza.

Mantecatori verticali tradizionali a bagnomaria di glicole
La caratteristica di questi mantecatori è di avere la trasmissione del freddo attraverso un bagno di glicole, sarà quindi molto importante controllare che il punto di congelamento del glicole sia sempre corretto. Per questo è sufficiente procurare un misuratore di congelamento usato per i radiatori delle automobili, con il glicole a temperatura ambiente, controllare che il punto di congelamento sia superiore a -35°C. A tal scopo ricordiamo che se si usa glicole puro, bisogna miscelarlo con acqua e dalla miscela si ricava il punto di congelamento.

<table>
<thead>
<tr>
<th>Glicole</th>
<th>Acqua</th>
<th>Temp. congelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 %</td>
<td>80 %</td>
<td>-8°C</td>
</tr>
<tr>
<td>30 %</td>
<td>70 %</td>
<td>-15°C</td>
</tr>
<tr>
<td>40 %</td>
<td>60 %</td>
<td>-23°C</td>
</tr>
<tr>
<td>50 %</td>
<td>50 %</td>
<td>-36°C</td>
</tr>
<tr>
<td>60 %</td>
<td>40 %</td>
<td>-55°C</td>
</tr>
</tbody>
</table>

Se il glicole tende a congelare, provoca intorno ai tubi di refrigerazione una corona di ghiaccio che fa da isolante termico diminuendo notevolmente la resa della macchina stessa.

Sarebbe importante sostituire ogni stagione il liquido in questione, oltre che per avere sempre la macchina in perfetta efficienza, anche per una questione igienica in quanto è facile avere un travaso di miscela di gelato dentro l’antigelo.

Altri accorgimenti:
- Ingrassare ogni stagione gli ingranaggi della testata,
- controllare la tensione delle cinghie,
- controllare il buon funzionamento del pulsante rosso di emergenza,
- smontare spesso i coltelli e svitare le “unghie” di raschiamento per una migliore pulizia.

<table>
<thead>
<tr>
<th>Oggetto dell’attività</th>
<th>Frequenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura di congelamento</td>
<td></td>
</tr>
<tr>
<td>Sostituzione liquido</td>
<td>A</td>
</tr>
<tr>
<td>Ingranaggi testata</td>
<td>A</td>
</tr>
<tr>
<td>Tensione cinghie</td>
<td>M</td>
</tr>
<tr>
<td>Pulsante emergenza</td>
<td>S</td>
</tr>
<tr>
<td>Pulizia coltelli</td>
<td>S</td>
</tr>
<tr>
<td>Impianto</td>
<td>Attività</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Pastorizzatore</td>
<td>Funzionamento</td>
</tr>
<tr>
<td></td>
<td>La miscela viene versata nel pastorizzatore a temperatura ambiente, la macchina inizia il ciclo di riscaldamento portando il prodotto a +85°C + 2°C, raggiunta questa temperatura inizia il ciclo di raffreddamento fino a + 4°C che è la temperatura di mantenimento e maturazione della miscela. Durante tutto il ciclo ed ogni qualvolta si accende il compressore frigorifero, si mette in moto anche l’agitatore. Durante il tempo di maturazione, cioè il tempo durante il quale la miscela viene lasciata a +4°C dopo la pastorizzazione, l’agitatore interviene periodicamente per alcuni secondi, al fine di tenere la miscela sempre ben amalgamata ed evitare così la formazione di pellicole superficiali. La pastorizzazione si può fare anche a temperature più basse di +85°C, in questo caso però, una volta raggiunta la temperatura desiderata ad esempio +65°C, il pastorizzatore deve tenere la miscela a temperatura fissa (65°C) per 32 minuti e poi iniziare il raffreddamento. Ci sono dei tempi di sosta ben precisi per garantire la sicura pastorizzazione del prodotto. Le nuove macchine a controllo elettronico forniscono automaticamente i tempi di sosta in base alla temperatura scelta.</td>
</tr>
<tr>
<td></td>
<td>E’ necessario svolgere le seguenti azioni:</td>
</tr>
<tr>
<td></td>
<td>• verifica del buon funzionamento dell’agitatore,</td>
</tr>
<tr>
<td></td>
<td>• verifica della perfetta efficienza dell’impianto frigorifero settimanale (tempo massimo di raffreddamento 90 minuti),</td>
</tr>
<tr>
<td></td>
<td>• pulizia del rubinetto erogatore (giornaliera),</td>
</tr>
<tr>
<td></td>
<td>• sostituzione delle guarnizioni del rubinetto qualora presentino tracce di usura ed essiccazione (verifica mensile del loro stato di usura),</td>
</tr>
<tr>
<td></td>
<td>• continua pulizia del condensatore ad aria se la macchina è raffreddata ad aria (settimanale),</td>
</tr>
<tr>
<td></td>
<td>• verifica delle temperature raggiunte e dell’uniformità di riscaldamento della massa</td>
</tr>
<tr>
<td>Impianto</td>
<td>Attività</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Montapanna

La macchina montapanna è costituita essenzialmente da un piccolo frigorifero per la conservazione del prodotto e da una pompa con tessurizzatore per far incorporare aria alla panna al momento dell’uso. La panna deve contenere circa il 35% di grasso e la temperatura di conservazione deve essere tra i +2°C e +4°C.

E’ necessario pulire ogni giorno la pompa, il tessurizzatore e prestare particolare cura nel pulire il carburatore, cioè il meccanismo che permette la regolazione dell’aria, controllando l’efficienza dei piccoli forellini d’aspirazione dell’aria.

Si possono avere in generale due tipi di problemi in un montapanna.

1) la panna esce liquida: il carburatore dell’aria è sporco o mal regolato oppure la panna è troppo magra e non trattiene aria a sufficienza oppure la temperatura della riserva è troppo alta (es. + 6°C);
2) La panna non esce: la pompa non funziona oppure la panna è troppo grassa e tende a burrificare (in questo caso aggiungere un po' di latte) oppure la temperatura della riserva è troppo fredda.

Non far mai funzionare la pompa a vuoto senza panna.

Qualora la panna esca liquida, non rimetterla nella macchina.

Prodotto

La produzione del gelato artigianale si sviluppa in fasi comprendenti l'acquisizione delle materie prime fino alla vendita dei prodotti finiti. Questa parte del manuale è stata
arricchita di notizie di stampo tecnologico anche per aiutare gli utilizzatori a comprendere l'individuazione dei pericoli connessi alle tappe della produzione. Per ognuna di queste è stata evidenziata una tabella che riassume l'entità del potenziale pericolo in relazione con le cause di accadimento.

Approvvigionamento materie prime

In questo capitolo sono elencate e descritte tutte le materie prime utilizzate nella fabbricazione del gelato artigianale, del sorbetto e del semifreddo all’italiana. Per semplicità possono essere classificate in diverse classi merceologiche (prodotti lattiero caseari, prodotti dolcificanti, aromatizzanti, ovoprodotti, sostanze grasse di origine animale e vegetale, prodotti alcolici, additivi e coloranti) oppure in base alle varie esigenze di conservazione richieste (conservazione a temperatura ambiente, in frigorifero a temperature positive e in congelatore a temperature negative).

Le materie prime maggiormente utilizzate nel settore della gelateria artigianale sono:

- Acqua
- Aria
- Cacao

 Cacao amaro, cacao magro, cioccolato fondente, coperture, surrogato di cioccolato, scagliette di cioccolato fondente
- Caffè

 Liquido, liofilizzato
- Coni e cialde
- Emulsionanti, stabilizzanti, addensanti, gelificanti

 Acido citrico, agar-agar, alginato di potassio, alginato di sodio, carbossimetilcellulosa, carragenine, esteri dei mono e digliceridi ac. grassi, farina semi carrube, farina semi guar, mono- e digliceridi ac. grassi, pectina, sorbitolo, sucresteri
- Farina
- Frutta

 Fresca, surgelata, sciroppata, liofilizzata, essiccata, tostata, in pasta
- Guarniture
- Lattiero-caseari

 Latte pastorizzato fresco, latte UHT, latte in polvere, latte condensato, panna, burro, yogurt
- Liquori
- Semilavorati
- Uova

 Uova fresche, criogelate, uova pastorizzate zuccherate, albume e tuorlo criogelati
- Vaniglia
- Vino
- Zuccheri

 Destrosio, fruttosio, sciroppi di glucosio, maltodestrine, miele, saccarosio, zucchero invertito
Il gelatiere artigiano deve conoscere le caratteristiche dei prodotti impiegati per quanto riguarda non solo la loro funzione e utilizzo nella formazione del prodotto finito, ma anche per i possibili pericoli di tipo igienico che possono apportare. Gli esempi di pericoli e delle possibili cause annesse ad alcune materie prime sono riassunti nella successiva tabella:

<table>
<thead>
<tr>
<th>Materie prime</th>
<th>Pericoli</th>
<th>Possibili cause</th>
</tr>
</thead>
</table>
| Acqua | • Patogeni batterici e parassiti
 • Virus
 • Residui chimici | • Insufficiente controllo dell’acquedotto o del pozzo e delle linee di trasferimento |
| Aria | • Muffe | • Umidità elevata ambientale |
| Cioccolato | • *Salmonella spp.*
 • Presenza di infestanti | • Mancato rispetto dei parametri di fabbricazione
 • Condizioni di stoccaggio |
| Coni e cialde | • Sviluppo microbico e di muffle | • Inadeguate condizioni di stoccaggio; rottura confezioni |
| Frutta fresca | • Presenza di infestanti
 • Presenza di patogeni batterici
 • Virus | • Trasporto e magazzini inadeguati |
| Latte pastorizzato | • Antibiotici
 • *Escherichia coli*
 • Tossine di origine microbica | • Inefficace controllo del produttore
 • Inefficacia del trattamento
 • Proliferazione microbica nel latte crudo |
| Nocciole | • Micotossine di origine micotica | • Magazzino umido |
| Panna | • *Staphylococcus aureus*
 • *Salmonella spp* | • Inefficace trattamento termico e abusi termici durante la conservazione |
<p>| Prodotti in pasta | • Muffe | • Rottura confezioni |
| Prodotti in polvere | • Presenza di infestanti | • Rottura confezioni, inadeguate condizioni di stoccaggio |</p>
<table>
<thead>
<tr>
<th>Materie prime</th>
<th>Pericoli</th>
<th>Possibili cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uova fresche</td>
<td>• Presenza di materiale estraneo</td>
<td>• Apertura confezioni, imballaggi inadeguati</td>
</tr>
<tr>
<td></td>
<td>• Salmonella spp</td>
<td>• Contaminazione della superficie del guscio</td>
</tr>
</tbody>
</table>

I pericoli derivanti dall’utilizzo di queste materie prime sono legati alla loro natura, alla integrità delle confezioni, al processo produttivo per mezzo del quale sono state ottenute, alle condizioni di trasporto, alle modalità di conservazione e al corretto utilizzo nella lavorazione del gelatiere artigianale.

E’ consentito l’utilizzo di additivi in base alle indicazioni contenute nelle disposizioni riportate nei riferimenti legislativi.

Il cartello generale degli ingredienti

Per quanto riguarda la conoscenza della composizione dei prodotti esiste l’obbligo da parte del produttore di esporre un cartello dove sono indicati tutti gli ingredienti utilizzati. Se si utilizzano dei semilavorati in dose superiore al 25% del prodotto finito è necessario elencare anche gli ingredienti che sono presenti nel semilavorato.

Nel D.M. 20 dicembre 1994 dal titolo “Schema unico degli ingredienti dei prodotti della gelateria, della pasticceria, della panetteria e della gastronomia venduti sfusi” si rileva la necessità di dare attuazione alle normative comunitarie mediante l’indicazione di una lista in ordine di peso decrescente relativo ai prodotti elencati nello schema dell’allegato I:

<table>
<thead>
<tr>
<th>Gruppo</th>
<th>Ingredienti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelati al latte e derivati</td>
<td>Latte, zucchero, destrosio, sciroppp di glucosio, panna, uova, caffè, cacao, cioccolato, vaniglia, grasso vegetale, olio vegetale, aromi, addensanti..., coloranti...</td>
</tr>
<tr>
<td>Gelati alla frutta e agli ortaggi</td>
<td>Acqua, zucchero, destrosio, sciroppp di glucosio, latte, frutta e ortaggi, aromi, addensanti..., coloranti...</td>
</tr>
<tr>
<td>Gelati ai cereali</td>
<td>Acqua, zucchero, destrosio, sciroppp di glucosio, panna, cereali, uova, aromi, addensanti..., coloranti...</td>
</tr>
<tr>
<td>Semifreddi</td>
<td>Latte, panna, zucchero, destrosio, sciroppp di glucosio, uova, pan di Spagna, cacao, cioccolato, caffè, amarena, nocciola, alcool, aromi,</td>
</tr>
</tbody>
</table>
Ricevimento delle materie prime

La buona riuscita dei prodotti e la loro sicurezza dal punto di vista igienico sono legati alle condizioni di arrivo nella gelateria e alla successiva conservazione. All’atto della stipulazione dei contratti di acquisto si definiscono le caratteristiche dei prodotti che si vogliono acquistare mentre nella fase di ricevimento si verifica se queste specifiche sono state rispettate.

E’ fondamentale al ricevimento verificare lo stato igienico dei prodotti (prodotto e imballaggio) e le modalità di conservazione.

<table>
<thead>
<tr>
<th>Tappa</th>
<th>Pericolo individuato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ricevimento materie prime</td>
<td>Non rispetto delle specifiche in riferimento agli aspetti di tipo microbiologico, chimico, organolettico, del trasporto, legislativo, tecnologico e di rintracciabilità</td>
</tr>
</tbody>
</table>

Durante il ricevimento il gelatiere che conosce i pericoli di tipo igienico relativo all’utilizzo di queste materie prime deve mettere in atto una serie di azioni allo scopo di prevenire l’insorgenza di contaminazioni pericolose per la salute del consumatore. L’esito positivo di questa verifica renderà il prodotto accettato.

Nel capitolo 9 sono riportate le azioni da intraprendere in funzione di una corretta individuazione di questi pericoli.

Nella successiva analisi dei pericoli e individuazione dei punti di controllo critici sarà importante applicare queste disposizioni laddove esiste un pericolo che il gelatiere definisce importante per le conseguenze che può portare e per la relativa frequenza di accadimento.

Può essere utile effettuare sulla base di parametri misurabili (rispetto dei tempi di consegna, temperature dei prodotti, costi, ecc.) una classifica delle “prestazioni” dei fornitori (qualifica dei fornitori) per avere la possibilità di ponderare gli acquisti. In questo caso si devono reputare obbligatori i requisiti di tipo igienico dei prodotti forniti.

Deposito

Stoccaggio delle materie prime

Dopo il ricevimento per la maggior parte delle materie prime è prevista la conservazione, tappa da gestire accuratamente sia per confezioni ancora chiuse che per quelle già aperte. In genere è utile trasvase parte delle materie prime delle confezioni originarie in contenitori di materiale idoneo ed approvato per le sostanze alimentari, facilmente richiudibili ed a tenuta, opportunamente etichettati: il riutilizzo dei contenitori è condizionato da una accurata pulizia e manutenzione.

Per tutti i prodotti deperibili a temperatura ambiente, è necessario garantire la conservazione a temperature adeguate e soprattutto la continuità della catena del freddo.
Per semplicità si possono distinguere tre tipi di condizioni di conservazione, fatta eccezione il caso in cui siano presenti indicazioni diverse:

<table>
<thead>
<tr>
<th>Condizioni di conservazione</th>
<th>Materie prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura ambiente, in luogo fresco, asciutto e aerato</td>
<td>Latte condensato zuccherato, Latte sterilizzato, Latte in polvere, Panna sterilizzata, Tuorlo pastorizzato zuccherato, Tuorlo in polvere, Zuccheri, Caffè liofilizzato, Cioccolato, Polvere di cacao, Farina</td>
</tr>
<tr>
<td>Frigorifero a + 4°C</td>
<td>Latte pastorizzato, Panna fresca, Burro, Uova fresche, Frutta fresca</td>
</tr>
<tr>
<td>Congelatore a - 18°C</td>
<td>Tuorlo criogelato, Frutta surgelata</td>
</tr>
</tbody>
</table>

Anche in questa tappa sono possibili alcune contaminazioni pericolose:

<table>
<thead>
<tr>
<th>Tappa</th>
<th>Pericolo individuato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stoccaggio materie prime</td>
<td>Contaminazione e moltiplicazione microbica.</td>
</tr>
</tbody>
</table>

Per i prodotti aventi un tempo di stoccaggio limitato è necessario applicare il sistema di utilizzo delle scorte “del primo entrato - primo uscito”.
Questo requisito diviene particolarmente importante quando gli utilizzatori delle materie prime sono molti e nel caso di materie prime sfuse.
Dovrebbero essere previste visite periodiche durante le quali valutare le condizioni ambientali dei locali di stoccaggio, il controllo delle scadenze dei prodotti deteriorabili, lo stato di conservazione e pulizia delle materie prime.
In sintesi le attività da intraprendere sono:
- mantenere idonei i parametri ambientali mediante il rispetto di un programma di manutenzione degli impianti frigoriferi e degli ambienti in cui vengono poste le materie prime,
- applicare con frequenze periodiche le procedure di pulizia e sanificazione agli impianti e agli ambienti di conservazione,
- rispettare i tempi di conservazione e le date di scadenza dei prodotti mediante un approvvigionamento cadenzato con i consumi previsti,
- rispettare le capacità di carico degli impianti allo scopo di preservarne l’efficienza di funzionamento,
- gestire correttamente le confezioni aperte e utilizzare contenitori idonei per il travaso delle materie prime.
Bilanciatura della ricetta

Bilanciare gli ingredienti significa disporre nei giusti rapporti i vari ingredienti allo scopo di ottenere un prodotto finito dalla caratteristiche desiderate.

Non molto tempo addietro l’artigiano gelatiere “pesava” le sue miscele con il densimetro, il vecchio “pesa sciroppi”. I famosi 18-20°Bè, sui quali l’operatore tarava le sue miscele, oggi sono difficilmente applicabili a causa dell’introduzione in gelateria di nuove materie prime, quali zuccheri differenziati con peso specifico diverso e stabilizzanti, che modificano in modo evidente la densità della miscela.

La tecnica del pesa sciroppi è stata sostituita dal calcolo delle sostanze solide contenute nei vari componenti della miscela.

A questo proposito l’apporto in solidi nella ricetta di un gelato artigianale al latte è dato da:

- zuccheri
- grassi
- solidi del latte magro
- altri solidi

In genere i solidi totali nel gelato artigianale non devono essere inferiori al 32% e non superiori al 42%.

In un gelato a basso tenore di residuo secco (per es. 32% di solidi) il freddo provocherà, nella fase di indurimento, una tale formazione di ghiaccio da rendere il prodotto troppo duro e freddo. Si ha in sostanza troppa acqua che congela già attorno a 0°C e pochi solidi in grado di ritardare e frenare l’azione del freddo.

Nel caso inverso (con una miscela al 42% di solidi totali) si ottiene facilmente un prodotto molle e molto spesso farinoso non essendo stati disciolti interamente tutti i solidi.

Non basta tuttavia equilibrare solamente i rapporti fra solidi ed acqua entro i valori sopra indicati; è necessario proporzionare le materie prime che costituiscono l’insieme dei solidi possibilmente entro i seguenti livelli:

Zuccheri	saccarosio, destrosio, sciroppo di glucosio, zucchero invertito, miele	16 - 22 %
Grassi	contenuti nel latte, nella panna, nel burro, nei grassi vegetali, nel tuorlo d’uovo, nella pasta di nocciole, noce, ecc.	6 - 12 %
Solidi del latte magro	contenuti nel latte, nella panna, nel latte magro in polvere: si tratta in maggioranza di proteine, lattosio e sali minerali	7 - 12 %
Altri solidi	contenuti nelle uova, cacao, paste di caffè, nocciole, ecc., stabilizzanti ed emulsionanti	1 - 5 %
I sorbetti sono composti da acqua, zuccheri, polpe e/o succhi di frutta per cui gli unici solidi sono rappresentati dagli zuccheri. Sono quindi questi ultimi che vanno bilanciati attentamente, tenendo presente sia quelli contenuti nello sciroppo base, sia quelli apportati dai succhi o polpe di frutta. Il contenuto zuccherino della frutta presenta spesso notevoli variazioni (tipo di frutto, zona di provenienza, grado di maturazione, cultivar, ecc.) per cui è necessario adattare le proporzioni degli ingredienti, utilizzando delle tabelle di composizione generale od avvalendosi di un rifrattometro che possa indicare con precisione la percentuale totale degli zuccheri.

Il semifreddo all’italiana ha come elementi principali la crema pasticciera, la panna montata e la merlinga cotta.

La sua preparazione comporta l’unione dei tre composti, avendo cura di non smontarli e di amalgamarli uniformemente.

L’aromatizzazione avviene direttamente durante la preparazione della crema pasticciera, oppure aggiungendo a freddo passate di frutta, liquori, frutta candita, pan di Spagna, granelli varie e quant’altro si ritiene possa essere utile.

Per la predisposizione degli elementi base del semifreddo si trovano indicazioni più precise negli studi particolareggiati al capitolo 13.3.

La bilanciatura in ogni caso deve rispettare alcune indicazioni: la panna non dovrebbe essere inferiore al 50% in quanto è l’elemento primario che assolve al compito di dare sofficità al prodotto finito. La merlinga all’italiana non dovrebbe superare il limite del 20%, considerando il fatto che non è apportatrice di elementi aromatici e che, rispetto alla panna, apporta una struttura meno pregiata. La crema pasticciera assolve il compito di apportare “corpo” e quindi deve essere presente attorno al 30%. Nei semifreddi di frutta la percentuale di crema si riduce al 25%. Eventuali aggiunte di liquori non dovrebbero superare quantitativamente il 6% ed essere introdotte nella massa il più tardi possibile.

Si deve porre la massima attenzione nella manipolazione di queste preparazioni a partire dalla pulizia e conservazione delle materie prime, in quanto successivamente verranno mescolate senza subire un processo termico di risanamento.

Il giusto bilanciamento degli ingredienti ha influenza anche sulla resistenza agli sbalzi di temperatura e quindi sulla maggiore conservabilità del prodotto finito.

Nella “progettazione” del gelato artigianale abbiamo dunque riscontrato un pericolo per la sicurezza del consumatore, il quale può venire associato ad un’azione in grado di ridurre o prevenirne l’evenienza:

<table>
<thead>
<tr>
<th>Tappa</th>
<th>Pericolo individuato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilanciatura ingredienti</td>
<td>Minore conservabilità del prodotto finito dovuta allo squilibrio delle componenti delle miscele</td>
</tr>
</tbody>
</table>

Le azioni di controllo da applicare sono quelle che semplicemente si affidano all’esperienza e alle conoscenze dei processi di produzione. Maggiore è la stabilità del prodotto finito agli shock termici, maggiore sarà anche la sua conservabilità.
Dosaggio degli ingredienti

Il dosaggio e la pesatura degli ingredienti devono essere per quanto possibile esatti secondo una ricetta in precedenza studiata e bilanciata. La costanza di un prodotto alimentare si realizza attraverso un dosaggio degli ingredienti ed un processo produttivo preciso e standardizzato. La tappa di dosaggio comprende le singole operazioni di apertura delle confezioni, la pesatura e la successiva chiusura di quelle confezioni che lo consentono. L’apertura e la chiusura delle confezioni devono essere effettuate in modo che non si abbiano contaminazioni del prodotto sia di tipo microbiologico, derivate dalla mancanza di pulizia di utensili e degli ambienti ove vengono svolte queste operazioni, sia di tipo particellare derivate dall’introduzione accidentale nei contenitori di parti di imballaggio o di schegge degli strumenti utilizzati per aprire. La pesatura deve essere effettuata con bilance il cui stato di taratura sia stato verificato secondo una determinata frequenza, e utilizzando recipienti, cucchiai o altro puliti ed asciutti.

I piatti delle bilance devono essere accuratamente puliti soprattutto dopo aver pesato delle materie prime che possono rilasciare residui. Si deve porre attenzione a quanto previsto nelle procedure di igiene del personale durante la pesatura e preparazione delle miscele soprattutto qualora si utilizzino uova e frutta freschi. E’ importante la pulizia esterna dei contenitori richiuse e la loro conservazione alle condizioni prescritte sulle confezioni. Potrebbe essere utile riportare sulle confezioni richiuse la data di apertura, in modo tale da prevenire il pericolo di utilizzare delle materie riposte in contenitori aperti da molto tempo (secondo la logica FIFO - First In First Out).

In sintesi i pericoli annessi alla tappa di dosaggio degli ingredienti possono essere i seguenti:

<table>
<thead>
<tr>
<th>Tappa</th>
<th>Operazioni</th>
<th>Pericolo individuato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosaggio ingredienti</td>
<td>Apertura confezioni</td>
<td>Contaminazione biologica dall’ambiente, dal personale, dalle attrezzature (*). Contaminazione particellare dei prodotti dalle confezioni e dalle attrezzature utilizzate.</td>
</tr>
<tr>
<td></td>
<td>Pesatura o dosaggio</td>
<td>Contaminazione biologica dall’ambiente, dal personale, da attrezzature(*)</td>
</tr>
<tr>
<td></td>
<td>Chiusura confezioni</td>
<td>Contaminazione biologica dall’ambiente, dal personale, dai contenitori utilizzati per la conservazione. Contaminazione particellare dei prodotti dalle confezioni e dalle attrezzature (*) utilizzate.</td>
</tr>
</tbody>
</table>

(*) = cucchiai e spatole, piatti della bilancia, contenitori.
Miscelazione

La miscelazione dei singoli ingredienti ha come finalità la loro uniforme distribuzione nella miscela. Questa operazione, pur non presentando particolari difficoltà, va tuttavia eseguita con un certo ordine.

Nella preparazione del gelato a base di latte si suddividono le materie prime ed i semilavorati in liquidi e solidi, miscelando successivamente i liquidi a freddo e incorporando i solidi in parte a freddo e in parte a caldo.

Questa operazione che un tempo avveniva manualmente ed a fuoco diretto, viene oggi condotta direttamente nel tino di pastorizzazione nel quale un agitatore provvede a disperdere uniformemente i diversi ingredienti, mentre il riscaldamento agevola la solubilizzazione dei solidi nella parte liquida.

Le miscele per il sorbetto possono essere preparate addizionando ad uno sciroppo di glucosio addensanti e gelificanti. Questi sciroppi devono essere pastorizzati e conservati in recipienti ben chiusi in frigorifero a temperatura positiva. Data la presenza degli stabilizzanti, essi devono essere consumati entro 5 o 6 giorni.

Un altro modo per preparare un sorbetto è quello di comporre di volta in volta la miscela con acqua, zuccheri, polpe e/o succhi di frutta e addensanti. Tale miscela, dopo opportuna maturazione dovrà essere acidificata e successivamente mantecata.

La miscelazione nella fabbricazione di un semifreddo comprende l’unione delle singole materie prime per la preparazione degli elementi che lo costituiscono, nonché l’incorporazione di quest’ultimi tra di loro. Alla crema pasticcera si aggiungono quindi tutti gli ingredienti destinati all’aromatizzazione (pasta nocciola, pasta gianduia, pasta caffè, frutta candita, liquori, ecc.), poi la merina all’italiana, miscelando con attenzione in modo da non farla smontare, ed infine la panna montata, anch’essa incorporata delicatamente.

Per tutte le miscelazioni che non sono seguite da un trattamento termico di risanamento (produzione di semifreddi), oppure che vengono conservate per qualche giorno prima della pastorizzazione, è necessario applicare una corretta e attenta procedura di pulizia delle attrezzature, degli impianti e degli ambienti di lavoro. Inoltre il personale operante dovrà rispettare le norme di buona prassi igienica identificate in questo manuale nelle procedure di igiene del personale (GMP).

Infatti i pericoli di tipo igienico riguardano gli ambienti, gli impianti, le attrezzature, gli utensili e il personale che si trova a contatto con i prodotti.

<table>
<thead>
<tr>
<th>Tappa</th>
<th>Pericolo individuato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscelazione</td>
<td>Contaminazione biologica dall’ambiente, dal personale, dalle attrezzature e dagli utensili. Contaminazione da residui di detergenti e disinfettanti presenti nei miscelatori.</td>
</tr>
</tbody>
</table>
Pastorizzazione

La pastorizzazione è un trattamento termico effettuato per conferire la stabilità biologica o enzimatica agli alimenti, distruggendo i microrganismi patogeni e gli agenti delle alterazioni, senza danneggiare eccessivamente i componenti chimici e biologici e senza alterare le caratteristiche organolettiche del prodotto. La temperatura ed i tempi vengono regolati a seconda della composizione e della sensibilità dei singoli prodotti in maniera da evitare la degradazione delle vitamine e delle proteine e mantenere così il valore nutritivo dell’alimento.

Si distinguono tre metodi di pastorizzazione a seconda delle diverse combinazioni di tempo e temperatura:

- **Pastorizzazione bassa:** temperatura a +65°C per 30 minuti e raffreddamento veloce a temperature inferiori ai +5°C.
- **Pastorizzazione media:** temperatura a +72°C per 15 minuti e raffreddamento rapido a temperature inferiori ai +5°C.
- **Pastorizzazione alta:** temperatura a +82°C per 5 secondi e raffreddamento rapido a temperature inferiori a +5°C.

Affinché una miscela sia bonificata è indispensabile che tutte le materie impiegate subiscano un processo termico per il tempo necessario e che il successivo raffreddamento avvenga al riparo da eventuali e sempre possibili re-inquinamenti e soprattutto nel più breve tempo possibile.

La bollitura degli ingredienti a fuoco diretto, tecnica molto diffusa nel passato, oltre ad essere faticosa e irrazionale, presenta il grave inconveniente del raffreddamento lento della miscela. Il raffreddamento a temperatura ambiente è assolutamente da evitare perché, raggiunto l’intervallo di temperatura critico tra i +25°C ed i +40°C, la flora microbica non eliminata troverà terreno ed ambiente favorevolissimo per la crescita, per cui tutta l’operazione eseguita verrebbe a perdere la sua efficacia.

Raffreddare la miscela nella cella frigorifera è quanto mai sconsigliabile in quanto i vapori della miscela calda si depositerebbero sugli evaporatori della cella riducendo la resa dell’apparecchiatura; inoltre gli altri prodotti depositati in cella verrebbero a subire dei veri e propri shock termici. In ogni caso il raffreddamento risulterebbe lento e quindi assolutamente da evitare.

I moderni pastorizzatori assicurano la miscelazione di tutti gli ingredienti, la loro completa solubilizzazione, il riscaldamento alla temperatura voluta, il repentino raffreddamento ai +4°C / +5°C, la maturazione e la conservazione della miscela fino al momento del congelamento in unica vasca chiusa.

La pastorizzazione così eseguita produce un miglioramento qualitativo del prodotto provocando un rendimento ottimale delle sostanze aromatiche, la solubilizzazione degli zuccheri, l’idratazione degli addensanti e delle proteine, la liquefazione e l’omogenea dispersione dei grassi e l’ottenimento di un’emulsione stabile.

La tappa della pastorizzazione può essere suddivisa nelle operazioni di riscaldamento, sosta e raffreddamento in modo tale da individuare facilmente i pericoli associati.

37
E’ necessario sottoporre la tappa di pastorizzazione ad alcune azioni di controllo che assicurino il raggiungimento delle temperature ed il rispetto dei tempi previsti su tutta la massa e di un raffreddamento veloce senza possibilità di contaminaloni crociate. Queste azioni di controllo riguardano la verifica periodica del buon funzionamento dei termometri e del tempo di trattamento, l’omogeneità del riscaldamento della massa attraverso il controllo delle temperature in diversi punti e la verifica periodica delle modalità di raffreddamento. L’applicazione di procedure efficaci di pulizia e sanificazione associate al rispetto di un programma di manutenzione, inoltre, riduce al minimo i pericoli delle contaminazioni.

I dati ottenuti da eventuali termometri registratori devono essere datati e conservati per due anni per essere presentati al servizio veterinario per il controllo. Il periodo si riduce a due mesi per i prodotti microbiologicamente deperibili.

Queste attività dovranno essere programmate e registrate, seguendo anche le indicazioni dei costruttori dei pastorizzatori.

I prodotti pastorizzati dovranno essere protetti da tutte le possibilità di contaminazione derivanti dagli impianti, ambienti e dal personale mediante una attenta pulizia di tutte le superfici e le attrezzature con i quali andranno a contatto.

Durante la pastorizzazione si ha anche l’emulsione dei grassi in acqua, pertanto volendo miscelare due sostanze liquide non miscibili, bisogna aumentare la superficie della parte dispersa riducendo nel contempo il relativo peso specifico. Ciò è realizzabile solamente attraverso un’azione meccanica molto spinta che frantuma i globuli di grasso in minute particelle in modo che possano facilmente rimanere in sospensione ed uniformemente distribuite nel liquido in cui sono disperse. Questo trattamento meccanico si indica con il nome di omogeneizzazione ed interessa oltre i grassi, anche le proteine. Affinché una miscela omogeneizzata rimanga più sicuramente stabile, si aggiungono degli emulsionanti, sostanze il cui compito è quello di ridurre la tensione superficiale delle sostanze.

Diversi fattori influiscono su un’ottimale omogeneizzazione:
composizione della miscela, con particolare riguardo alla percentuale di grassi ed al rapporto tra questi e la parte non grassa del latte,

tipo di grassi usati (di origine animale e/o vegetale),

tipo di valvole,

temperature della miscela.

La moderna tecnologia, sfruttando in parte i principi della omogeneizzazione, ha messo a disposizione del gelatiero artigiano delle apparecchiature (emulsori) che inseriti nelle medesime apparecchiature usate per la pastorizzazione, permettono di avere un prodotto finale soddisfacente.

Gli emulsori, infatti, agiscono durante la fase della pastorizzazione frantumando con la loro azione meccanica le particelle di grasso, aiutando così gli emulsionanti a svolgere la loro azione al fine dell’ottenimento di un’emulsione stabile.

In ogni caso è indispensabile mantenere le condizioni igieniche degli impianti utilizzati applicando una corretta pulizia e una manutenzione periodica.

Maturazione

Le funzioni principali del processo di maturazione sono quelle di permettere alle proteine di assorbire l’acqua libera come acqua di idratazione e consentire ai grassi di cristallizzarre.

La completa idratazione dei solidi, ed in particolare delle proteine apportate dal latte, dalle uova e da eventuali gelatine è importante per ottenere una struttura ottimale. Mentre l’acqua libera viene rapidamente cristallizzata nel processo di gelatura, quella legata ne viene colpita più lentamente. Ciò comporta un minore pericolo di formazione di grossi cristalli di ghiaccio e di conseguenza l’ottenimento di un prodotto più spatolabile e meno grossolano.

Quando la miscela è calda, i grassi sono allo stato liquido e la cristallizzazione avviene durante e dopo il raffreddamento. Congelando la miscela contenente grassi non ancora cristallizzati, si tende a provocare una burrificazione incontrollata.

Altro aspetto del processo di maturazione è l’indurimento dei picolissimi globuli di grasso. È questa un’importante premessa, come nel caso della panna da montare, per un buon incorporamento di aria nel prodotto finito.

Il tempo di maturazione con l’ausilio di stabilizzanti può essere di 4 - 6 ore, ma normalmente si prepara la miscela nel pastorizzatore la sera e la si travasa nel maturatore sotto agitazione continua per trovarla pronta la mattina successiva dopo 12 - 14 ore.

Bisogna fare molta attenzione alla temperatura, ed al suo mantenimento a +4°C, circa durante la sosta nel maturatore: un eventuale innalzamento della temperatura al di sopra dei +15°C per qualche ora, abbinato alla presenza di una carica batterica residua o dovuta ad una pulizia inefficace, può provocare la moltiplicazione microbica.

Durante le ore notturne la mancata erogazione di energia elettrica può provocare un pericoloso innalzamento delle temperature dei tini di maturazione e dei frigoriferi.

Qualora il fenomeno fosse frequente si consiglia di dotarsi, soprattutto nelle zone e nei
periodi più caldi, di un gruppo di continuità che assicuri il funzionamento di almeno questi impianti.

<table>
<thead>
<tr>
<th>Tappa</th>
<th>Pericolo individuato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturazione</td>
<td>Contaminazione biologica dall’ambiente, dal personale, dalle attrezzature e dagli utensili durante il trasferimento della miscela. Contaminazione da residui di detergenti e disinfettanti presenti nei maturatori. Moltiplicazione della flora microbica residua per un eccessivo e prolungato innalzamento della temperatura superiore a +15°C per un tempo di qualche ora.</td>
</tr>
</tbody>
</table>

Risulta quindi fondamentale la verifica del buon funzionamento dei termometri applicati al maturatore e l’applicazione delle procedure di pulizia e manutenzione.

Processo di congelamento (Mantecazione)

È senza dubbio l’operazione più importante nella fabbricazione del gelato, poiché da essa dipendono per buona parte la qualità e la resa del prodotto. La miscela da gelato si presenta come un complesso sistema di soluzione - emulsione - colloide. In soluzione si trovano principalmente gli zuccheri, i sali minerali e le vitamine idrosolubili, in emulsione vi sono i grassi e le vitamine liposolubili e in sospensione colloidale vi sono le proteine e gli stabilizzanti. È’ bene ricordare che tutti questi ingredienti si trovano distribuiti in una quantità d’acqua notevolmente preponderante e che sotto l’azione del freddo sarà maggiormente questa (ad eccezione dell’acqua legata molecolarmente a gruppi idrofili) a cambiare stato, cioè a cristallizzarsi. Grassi e proteine non influenzano il punto di congelamento e quindi ne consegue che nel congelamento di una miscela da gelato, i componenti che hanno la maggiore importanza sono l’acqua e gli zuccheri. Gli zuccheri (che rappresentano oltre il 50% del residuo secco totale nella miscela) normalmente abbassano in modo drastico il punto di congelamento; tra i vari tipi di zuccheri impiegati nella produzione del gelato hanno maggiore influenza il saccarosio, il destrosio (monoidrato) e lo zucchero invertito; minore influenza ha invece lo sciroppo di glucosio. La modificazione del punto crioscopico, dovuto alla percentuale di zuccheri contenuti in una miscela, presenta un risvolto importante per la spatolabilità del gelato. La struttura del gelato dipende sostanzialmente dalla finezza dei cristalli di ghiaccio, formatisi durante il congelamento, e dalla quantità d’aria che la miscela sarà riuscita ad incorporare.
L’incorporamento di aria che avviene nella prima fase di congelamento è denominato **overrun** e determina il volume del gelato ottenuto in eccesso rispetto al volume della miscela. Un gelato di buona struttura deve contenere aria nella giusta dose. Troppa aria produce gelato fioccoso, spugnoso e leggero che svanisce subito in bocca, mentre poca aria produce un gelato pesante e freddo in bocca.

L’incorporamento dell’aria dipende dalla conduzione del processo di gelatura e quindi anche dal tipo di mantecatore che si ha in dotazione, mentre la capacità di incorporare aria nella miscela dipende dal buon bilanciamento della stessa e dalla presenza di stabilizzanti.

Tendono a deprimere, oppure sono inerti nei riguardi dell’**overrun**, gli zuccheri in genere, lo sciroppo di glucosio, i grassi in quantità eccessiva, la frutta, il cacao, le paste varie (nocciola, pistacchio, torrone, ecc.). Favoriscono ed incrementano l’**overrun** i tuorli d’uovo, le proteine in genere, gli emulsionanti, gli alginati, le gelatine e gli stabilizzanti.

L’ottenimento di una struttura perfetta in cui gli elementi costitutivi della miscela siano nelle proporzioni e nelle condizioni ideali, risulta soprattutto dal corretto rapporto tra l’impiego del freddo e l’intensità della mantecazione.

La dimensione dei cristalli di ghiaccio dipende dalla velocità con cui sono andati formandosi; importante è la perfetta aderenza delle lame dei coltelli raschianti nel cilindro refrigerante.

Il processo di mantecazione può essere schematizzato in diverse fasi.

- Sotto l’azione del freddo avviene rapidamente un abbassamento della temperatura della miscela con conseguente inizio di formazione dei primi cristalli di ghiaccio. Contemporaneamente l’agitazione dei coltelli del mantecatore provoca l’incorporamento dell’aria, a meno che l’impianto non sia dotato di pompa per l’insufflamento forzato.
- La temperatura della miscela continua ad abbassarsi, sia per il freddo fornito dall’impianto frigorifero, sia per l’effetto dei cristalli di ghiaccio che man mano, raschiati dai coltelli dalla superficie del cilindro, ricadono nella miscela.
- Continuando la formazione di cristalli di ghiaccio (il che equivale ad una sottrazione di acqua pura dalla miscela) si verifica una maggiore concentrazione di solidi solubili nel liquido. Più è concentrata una soluzione da gelare (cioè più è alta la percentuale di solidi sciolti in essa) più si abbassa il punto di congelamento.
- Il congelatore dovrà di conseguenza fornire ulteriore freddo affinché altra acqua possa cristallizzare e siano soddisfatte le sempre più basse temperature richieste dalle mutate caratteristiche della miscela.
- Quando una determinata percentuale di acqua si sarà trasformata in cristalli di ghiaccio e la concentrazione dei solidi solubili nel liquido rimanente avrà raggiunto il punto di saturazione, la prima fase del processo di gelatura si potrà considerare compiuta.
- Il gelato così mantecato si presenterà asciutto, potrà essere estratto dal congelatore e posto nella cella di indurimento.
La tappa della mantecatura può essere suddivisa nelle operazioni di trasferimento della miscela (da impianti diversi o all’interno della stessa struttura), il congelamento vero e proprio e l’estrazione del gelato nelle sorbettiere e suo trasferimento.

Al fine di prevenire o ridurre le contaminazioni ambientali e derivate dagli impianti ed attrezzature utilizzati, è necessario applicare al mantecatore un programma di manutenzione e pulizia periodiche, ponendo particolare attenzione alle parti che sono difficilmente raggiungibili dalle soluzioni di lavaggio e che quindi devono essere smontate e controllate.

Qualora parte della miscela non venga gelata immediatamente bisogna assicurarsi che la temperatura di conservazione non superi i 4°C per un massimo di 72 ore.

Caratteristiche dell’aria ambientale

La fase di incorporazione di aria nel gelato è importante e determinante per ottenere una struttura soffice, gradevole e un prodotto non eccessivamente freddo.

L’aria inglobata può contenere dei microrganismi che possono minare sia la qualità organolettica del prodotto che la sua sicurezza igienica.

Si deve prevedere che l’ubicazione dei punti di prelievo sia sufficientemente protetta da polveri e ubicata in zone accessibili per la pulizia.

E’ importante assicurare l’assenza di contaminazione da muffle di derivazione ambientale attraverso l’applicazione di filtri adeguati oppure mediante la pulizia periodica agli ambienti.

<table>
<thead>
<tr>
<th>Tappa</th>
<th>Operazioni</th>
<th>Pericolo individuato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mantecazione</td>
<td>Trasferimento</td>
<td>Contaminazione biologica dall’ambiente, dal personale, dalle attrezzature e dagli utensili durante il trasferimento della miscela. Contaminazione da residui di detergenti e disinfettanti presenti nelle attrezzature e recipienti adoperati.</td>
</tr>
<tr>
<td></td>
<td>Congelamento</td>
<td>Contaminazione dall’ambiente attraverso l’inglobamento di aria. Contaminazione da residui di detergenti e disinfettanti presenti nei mantecatori.</td>
</tr>
<tr>
<td></td>
<td>Estrazione</td>
<td>Contaminazione biologica dall’ambiente, dal personale, dalle attrezzature e dagli utensili durante il trasferimento della miscela. Contaminazione da residui di detergenti e disinfettanti presenti nei contenitori.</td>
</tr>
</tbody>
</table>

Il prodotto estruso deve essere riposto nelle sorbettiere o in recipienti puliti e coperto con carta oleata per alimenti per evitare contaminazioni ambientali e ossidazioni superficiali che provocherebbero variazioni di colore e alterazioni di sapore.
Indurimento

All’uscita dal mantecatore la temperatura del gelato si aggira abitualmente attorno ai -5 °C, -8 °C. A questa temperatura non è possibile conservare a lungo il gelato in quanto perderebbe ben presto la struttura formatasi durante la mantecazione. Il gelato nonché i sorbetti e i semifreddi richiedono per la loro conservazione, e quindi per il mantenimento ottimale della struttura costruita nel corso della mantecazione, temperature più basse. Inoltre, dopo la mantecazione, esso abbisogna di ulteriore freddo per acquisire la sua definitiva consistenza.

Questo consolidamento avviene attraverso il processo di indurimento a -20 °C, -22 °C. Al termine del processo di mantecazione di un gelato a base di latte, il 50-60% di acqua si è solidificata e di conseguenza un’ulteriore percentuale di acqua (a seconda della destinazione del prodotto) dovrà ancora cristallizzarsi. Il processo di indurimento non è altro che la cristallizzazione di una parte di questa rimanente acqua della miscela. Questa fase è importante e delicata e dovrà essere eseguita e controllata attentamente.

Le operazioni effettuate in questa tappa comprendono i trasferimenti dei prodotti e il loro indurimento.

<table>
<thead>
<tr>
<th>Tappa</th>
<th>Operazioni</th>
<th>Pericolo individuato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indurimento</td>
<td>Trasferimento</td>
<td>Contaminazione microbica dall’ambiente e dal personale.</td>
</tr>
<tr>
<td></td>
<td>Indurimento negli abbattitori</td>
<td>Contaminazione microbica dall’ambiente e moltiplicazione microbica per il mancato rispetto delle temperature e tempi previsti.</td>
</tr>
</tbody>
</table>

Il mantenimento delle temperature richieste per i tempi previsti è affidato alla buona manutenzione degli abbattitori di temperatura e al controllo periodico delle temperature.

Conservazione del prodotto finito

Di fronte alla necessità di dover conservare il gelato per un certo periodo di tempo è assolutamente necessario preservare il prodotto con la sua struttura e consistenza ottenute dal congelamento della miscela. A tale fine è indispensabile conservare il gelato alla temperatura più bassa e costante possibile.

Il gelato estruso dal mantecatore attorno ai -6°C (meglio se a temperature ancor più basse) ed indurito circa a -22° C dovrà essere posto alla stessa temperatura di indurimento se conservato per più giorni, mentre per un periodo più breve potrà essere
posto a temperature più alte che variano a seconda del punto di scongelamento del singolo prodotto. I recipienti e le sorbettiere utilizzate per la conservazione devono essere pulite seguendo le procedure di sanificazione e una volta riempite dovranno essere coperte. Anche i frigoriferi e gli armadi frigo vanno sottoposti ad un programma di pulizia secondo frequenze prestabilite e ad una manutenzione programmata. Bisogna evitare di utilizzare gli stessi frigoriferi per la conservazione dei prodotti finiti e delle materie prime.

<table>
<thead>
<tr>
<th>Tappa</th>
<th>Operazioni</th>
<th>Pericolo individuato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservazione e prodotti finiti</td>
<td>Trasferimento</td>
<td>Contaminazione microbica dall’ambiente, dal personale e dalle attrezzature.</td>
</tr>
<tr>
<td></td>
<td>Conservazione</td>
<td>Contaminazione microbica dall’ambiente di conservazione.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contaminazione e moltiplicazione microbica per il mancato rispetto delle temperature e tempi previsti.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contaminazione microbica e chimica dai contenitori utilizzati.</td>
</tr>
</tbody>
</table>

E’ utile contrassegnare le produzioni con la data di fabbricazione al fine di evitare di utilizzare gelati conservati da molto tempo ed avere quindi una corretta gestione delle eventuali scorte.

Vendita

L’atto della vendita comprende i molteplici modi di distribuzione del gelato, a seconda del tipo di prodotto, della struttura della gelateria e dell’acquirente. Possiamo così riassumere le diverse attività svolte alla vendita in:

- porzionatura e distribuzione mediante spatole o porzionatori a cucchiaio al banco di vendita su coni di cialda o coppette di materiale plastico o cartone,
- preparazione di coppe con aggiunta di panna montata, frutta fresca e sciroppata, guarniture e decorazioni e consumo presso i locali della gelateria,
- porzionatura e posizionamento su piattini con decorazioni e guarniture per i semifreddi,
- distribuzione di confezioni monodose di semifreddi e gelati,
- distribuzione in contenitori chiusi presso i luoghi di distribuzione (ristoranti, mense, ecc.).
Durante tutte queste attività è necessario proteggere i prodotti dalle contaminazioni ambientali, da quelle provenienti dalle attrezzature e utensili e da quelle che derivano da una non corretta manipolazione.

Se viene utilizzata della panna montata, si deve prestare attenzione alla pulizia e alla manutenzione del montapanna, mentre l’aggiunta di qualsiasi altro ingrediente deve essere soggetta ad un controllo del suo stato igienico.

Al termine della giornata è consigliata la copertura delle sorbettiere con carta oleata per evitare contaminazioni da condensa e ossidazioni. Nel caso che il banco di vendita possieda lo sbrinamento automatico il gelato può rimanere nella vetrina di vendita con le paratie chiuse, oppure riposto nella cella di conservazione. Le vetrine senza sbrinamento automatico devono venir spente al termine della giornata per poi essere pulite.

<table>
<thead>
<tr>
<th>Tappa</th>
<th>Operazioni</th>
<th>Pericolo individuato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendita</td>
<td>Utilizzo di porzionatori e spatole</td>
<td>Contaminazione microbica dalle attrezzature non mantenute in condizioni igieniche adeguate. Contaminazione da residui di detergenti e disinfettanti.</td>
</tr>
<tr>
<td></td>
<td>Utilizzo di confezioni ed imballaggi</td>
<td>Contaminazione chimica e particellare per cessione da parte dei materiali utilizzati.</td>
</tr>
<tr>
<td></td>
<td>Trasporto</td>
<td>Moltiplicazione microbica per il mancato rispetto delle temperature richieste.</td>
</tr>
<tr>
<td></td>
<td>Utilizzo di altri alimenti (panna, frutta fresca, sciroppi, ecc.)</td>
<td>Contaminazione biologica dagli alimenti non conservati adeguatamente e dal mancato rispetto delle procedure di pulizia e manutenzione degli impianti utilizzati (montapanna), ecc.</td>
</tr>
<tr>
<td></td>
<td>Aggiunta di guarniture</td>
<td>Contaminazione biologica e chimica dai materiali non conservati adeguatamente.</td>
</tr>
<tr>
<td></td>
<td>Utilizzo di coni e cialde</td>
<td>Contaminazione microbica dall’ambiente di conservazione. Contaminazione e moltiplicazione microbica per il mancato rispetto delle temperature e tempi previsti. Contaminazione microbica e chimica dai contenitori utilizzati.</td>
</tr>
</tbody>
</table>

Rifiuti e residui di lavorazione

Il decreto legislativo n.155 stabilisce che i residui alimentari devono essere raccolte in contenitori chiusibili e mantenuti in buone condizioni igieniche. E’ buona norma che i bidoni vengano lavati e disinfettati settimanalmente. Si devono inoltre prevedere
opportune disposizioni per la rimozione e il deposito dei residui alimentari e di altri scarti. A tal fine il decreto legislativo n.22 del 5.2.97 (Decreto Ronchi) detta norme precise sulla gestione dei rifiuti e degli imballaggi (compresi i rifiuti di imballaggio).

Approvvigionamento delle acque

Caratteristiche dell’acqua

L’acqua impiegata per i lavaggi della frutta, per i risciacqui e soprattutto per la diluizione di alcuni ingredienti è considerata a tutti gli effetti una materia prima.

Nel D.P.R. 24 maggio 1988, n. 236 sono riportati i requisiti delle acque impiegate dalle imprese alimentari sotto il punto di vista organolettico, chimico-fisico e batteriologico.

Le gelaterie possono utilizzare per l’approvvigionamento idrico sia acque provenienti da acquedotto gestito, sia da pozzi privati. Nel primo caso i controlli sono a carico del gestore dell’impianto che dovrà ottemperare alle richieste contenute nel D.P.R. di cui sopra; qualora si utilizzi invece acqua di pozzo si deve far riferimento alle prescrizioni regionali o provinciali in merito. Per creare i presupposti di una corretta qualità igienica dell’acqua utilizzata nei processi si devono effettuare i controlli ad una frequenza concordata con l’organo di vigilanza.

Personale

Igiene della persona

La manipolazione dei prodotti alimentari può essere una delle cause delle contaminazioni microbiche degli alimenti.

E’ stata dimostrata una significativa frequenza di infezioni e intossicazioni alimentari dovute a microrganismi portati dal personale che manipola l’alimento.

Queste contaminazioni possono dipendere dallo stato di salute degli operatori, dal non rispetto delle prescrizioni igieniche del prodotto e anche della persona.

E’ quindi opportuno che tutto il personale che opera nella preparazione del gelato artigianale sia informato sui principi dell’igiene messi in atto nell’azienda e sugli scopi da perseguire.

Il rispetto delle norme igieniche non deve essere il risultato di uno sforzo mnemonico ma deve diventare un automatismo.

Sono considerate come GMP (buone prassi di fabbricazione) tutte le procedure, i processi, i controlli e le azioni di prevenzione messe in atto per assicurare l’igiene dei prodotti alimentari.

Esse quindi riguardano in generale il personale, gli impianti, le attrezzature e gli utensili, le operazioni di pulizia e sanificazione, i processi e le verifiche, la conservazione e la distribuzione.

In questo manuale si fa riferimento alle disposizioni di legge e i requisiti presenti nell’allegato del D.L. n. 155 e al documento della FDA (**Current Good Manufacturing Practice in Manufacturing, Processing, Packaging, or Holding Human Food**) per quanto riguarda le regole da applicare da parte del personale che opera nella fabbricazione del gelato artigianale, al fine di assicurare l’igiene del prodotto.
Disposizioni di legge
Il personale deve essere in possesso del libretto di idoneità sanitaria ed è tenuto a sottoporsi a periodiche visite mediche di controllo.
In particolare la visita medica deve accertare che chi opera nella produzione di alimenti non sia portatore di malattie che possono essere trasmesse attraverso gli alimenti.
Si devono considerare soprattutto le patologie dell’apparato digerente, le affezioni croniche della faringe e laringe e le affezioni cutanee.
Il personale che presenta i sintomi di queste patologie deve essere escluso dal lavoro almeno fino alla verifica della scomparsa di dette patologie.

Igiene della persona
Dovrebbero far parte della normale prassi quotidiana il fare con regolarità il bagno o la doccia, lavare frequentemente i capelli, cambiare frequentemente la biancheria personale, abituarsi ad avere le unghie tagliate corte e pulite.
Abbigliamento: gli indumenti di lavoro devono essere di colore chiaro e devono essere indossati da chiunque entri nei locali di lavorazione. Non devono presentare tasche e la chiusura deve essere fatta con strisce adesive o con bottoni a pressione. Devono essere lavati frequentemente e custoditi negli armadietti a doppio scomparto dello spogliatoio. Non si devono portare in tasca monete o altri oggetti personali.
Devono essere tolti tutti i gioielli e monili che possono accidentalmente finire nei prodotti e che durante la manipolazione di alimenti non possono essere puliti e sanificati adeguatamente.
Copricapo: deve raccogliere completamente i capelli e le parti non raccolte dovranno essere racchiuse in retine a maglia fine. Deve essere indossato prima dell’inizio del lavoro e non nel laboratorio.
Calzature: è consigliato utilizzare calzature facilmente pulibili e solamente utilizzabili all’interno del laboratorio.
Guanti protettivi: se vengono utilizzati dei guanti protettivi è necessario che siano integri, puliti all’interno e anche all’esterno e mantenuti in tali condizioni. Devono essere impermeabili a meno che il loro utilizzo non sia adeguato o incompatibile con la lavorazione. Guanti perforati o rotti devono essere immediatamente sostituiti previo lavaggio e disinfezione delle mani.

Igiene delle mani
Le mani e gli avambracci devono essere lavati accuratamente con sapone e spazzolino per unghie periodicamente disinfettato, sotto un getto di acqua calda il cui comando non deve essere manuale.
Dopo il lavaggio è necessario procedere alla disinfezione delle mani prima di entrare nei locali di produzione, dopo aver fatto uso dei servizi igienici, dopo ogni sospensione del lavoro, dopo aver riparato il naso o la bocca da starnuti o colpi di tosse, dopo aver
maneggiato prodotti freschi (frutta) e gusci d’uovo, qualora si siano ad esempio spostati dei macchinari passando dall’ambiente di produzione ad un altro, dopo aver trasportato le immondizie.

Devono essere presenti asciugamani e fazzoletti di carta monouso e contenitori per riporli dopo l’uso a comando non manuale.

Altre precauzioni
L’assunzione di cibo, bevande o altro, fumare ecc. deve essere vietato nel locale di produzione.
Si dovrebbe evitare di passare direttamente da zone sporche (magazzino, servizi, esterno) a zone pulite (laboratorio).
E’ necessaria la regolamentazione degli accessi da parte di persone esterne, soprattutto se le loro condizioni igieniche possono dar luogo a contaminazioni del prodotto.
Anche chi effettua eventuali operazioni di manutenzione agli impianti deve rispettare queste indicazioni.

Formazione
Una buona conduzione aziendale deve prevedere un corretto addestramento del personale, così come prescritto dalle norme legislative vigenti: “Gli addetti devono ricevere un addestramento e/o una formazione, in materia di igiene alimentare, in relazione al tipo di attività che svolgono”.
Il personale deve essere informato sui principi generali relativi alle seguenti tematiche:
- corretta manipolazione degli alimenti;
- uso appropriato delle attrezzature e/o macchine;
- igiene della persona;
- comprensione della documentazione fornita;
- sicurezza sul posto di lavoro.
L’addestramento ha come obiettivo la comprensione e la successiva applicazione di quanto spiegato. Il personale così istruito dovrebbe sentirsi motivato nell’applicare quanto recepito nello svolgimento delle attività ad esso assegnate.
Una successiva tappa consiste nel dimostrare le qualifiche acquisite dal personale, soprattutto quelle degli addetti che eseguono attività il cui esito è particolarmente rilevante per le caratteristiche igienico-sanitarie e qualitative dei prodotti.
Il personale che manipola i prodotti alimentari deve essere informato sui pericoli di contaminazione esistenti, sulle tecniche di pulizia e disinfezione e sui principi di protezione dei prodotti.
A questo scopo è opportuno che il personale partecipi a corsi di formazione sulla manipolazione dei prodotti alimentari, il loro trattamento e sull’igiene personale, che illustrino le precauzioni necessarie a prevenire le contaminazioni degli alimenti.
Sono queste le prime indicazioni da fornire a chi si accinge ad intraprendere la professione di gelatiere.
L’attuazione di queste attività di formazione del personale deve essere registrata per dare dimostrazione della sua conoscenza.
PARTE SPECIALE

Linee guida per la stesura dei piani di autocontrollo

La metodologia HACCP costituisce un approccio di tipo preventivo alla sicurezza alimentare. Con tale strumento si procede sistematicamente ad un’analisi dei pericoli potenziali insiti nelle trasformazioni alimentari, identificando i punti di processo in cui i pericoli possono generarsi (non necessariamente manifestarsi) e consentendo di definire quali punti risultano determinanti per la salute del consumatore. Ciò consente di avere sotto controllo la sicurezza igienica degli alimenti superando i metodi di ispezione tradizionali che limitano la propria azione alla valutazione della salubrità del prodotto finito.

Il D.L. 26 maggio 1997, n. 155 sull’igiene dei prodotti alimentari all’articolo 3 cita l’applicazione della metodologia dell’HACCP quale strumento per individuare le fasi critiche per la sicurezza degli alimenti e per garantire che siano individuate, mantenute ed aggiornate le opportune procedure di sicurezza.

Sotto questo punto di vista il presente manuale, frutto del lavoro di un gruppo composto da diverse competenze, vuole fornire un aiuto al gelatiere artigianale per impostare e realizzare il proprio autocontrollo sulla base dei principi HACCP.

In questa parte sono evidenziate nei riquadri le indicazioni fornite dalla versione italiana, a cura dell’A.I.C.Q., dal documento adottato dalla 20° Sessione della Commissione FAO/WHO per il Codex Alimentarius, 1993.

L’applicazione dei principi riportati è facilitata con esempi e chiarimenti, tenendo in considerazione il settore considerato.

Costituzione del gruppo

Formare un gruppo multidisciplinare che abbia specifica conoscenza ed esperienza appropriate del prodotto. Qualora questa esperienza non sia disponibile sul posto, dovrebbe essere ottenuto un parere esperto da altre fonti.

La procedura logica per l’applicazione della metodologia prevede la realizzazione di un gruppo multidisciplinare che abbia conoscenze ed esperienze appropriate del prodotto. Per quanto riguarda una realtà produttiva industriale le competenze necessarie si riconoscono all'interno delle funzioni aziendali stesse.

Un esempio di gruppo di lavoro in grado di sviluppare la metodologia HACCP in azienda potrebbe essere il seguente.

<table>
<thead>
<tr>
<th>Funzione</th>
<th>Sigla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsabile dello stabilimento</td>
<td>STA</td>
</tr>
<tr>
<td>Assicurazione Qualità</td>
<td>AQ</td>
</tr>
<tr>
<td>Responsabile di produzione</td>
<td>PRO</td>
</tr>
<tr>
<td>Responsabile del laboratorio</td>
<td>LAB</td>
</tr>
<tr>
<td>Tecnico di laboratorio</td>
<td>LAB</td>
</tr>
</tbody>
</table>
Per quanto riguarda il settore di interesse di questo manuale si fa riferimento alla realtà artigianale, dove spesso più funzioni aziendali sono concentrate in poche o addirittura in un’unica persona.

Per la stesura del manuale per l’autocontrollo igienico il gelatiere può far riferimento ai contenuti di questo manuale nella parte speciale, riprendendo gli esempi ed adattandoli alla propria realtà.

In particolare si può far riferimento agli schemi proposti che evidenziano le attività necessarie per l’adozione dell’autocontrollo igienico.

Descrizione dei prodotti e loro destinazione

Dovrebbe essere formulata una descrizione completa del prodotto, includendo le informazioni sulla composizione e sul metodo di distribuzione.

Le informazioni relative ai prodotti devono riguardare tutti gli aspetti che possono influenzare la sicurezza igienica; nella successiva tabella sono riassunte le notizie da considerare per ogni tipologia di prodotto per poter applicare correttamente l’analisi dei pericoli.

<table>
<thead>
<tr>
<th>Prodotto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riferimenti normativi specifici</td>
</tr>
<tr>
<td>Caratteristiche chimiche</td>
</tr>
<tr>
<td>Caratteristiche fisiche</td>
</tr>
<tr>
<td>Caratteristiche microbiologiche</td>
</tr>
<tr>
<td>Materie prime utilizzate</td>
</tr>
<tr>
<td>Conservazione</td>
</tr>
<tr>
<td>Confezione</td>
</tr>
<tr>
<td>Imballaggio</td>
</tr>
<tr>
<td>Data di scadenza</td>
</tr>
<tr>
<td>Destinazione di vendita</td>
</tr>
<tr>
<td>Trasporto</td>
</tr>
</tbody>
</table>

Per aiutare il gelatiere artigiano nella conoscenza e corretta valutazione delle caratteristiche dei propri prodotti si riporta un riassunto delle principali considerazioni a riguardo del gelato e della sua produzione (Caratteristiche del gelato). Naturalmente si considerino tutte le informazioni riportate nella parte generale di questo manuale per
quanto riguarda le tecniche di produzione e le caratteristiche della conservazione, confezionamento e vendita.
Un ulteriore approfondimento sulle conoscenze del prodotto può essere tratto dai contenuti espressi nelle norme che regolamentano l’etichettatura, la presentazione e la pubblicità dei prodotti alimentari (Etichettatura dei prodotti).

Caratteristiche del gelato
Una definizione di gelato è riportata nell’O.M. del 13 dicembre 1978 nella quale si legge che per gelati a base di latte, crema e di altri derivati del latte, con o senza uova o prodotti d’uovo, si intendono i prodotti allo stadio solido o pastoso, ottenuti da miscele contenenti i suddetti ingredienti, che abbiano subito un processo contemporaneo (se in miscela solida o pastosa) di congelamento e di lavorazione (mantecazione) con incorporazione di aria, forzata o naturale, con specifica esclusione delle preparazioni che non subiscono tale processo, essendo congelate staticamente (semifreddi).
In questo manuale si considerano i gelati a base di latte che non superano il 50% del contenuto in latte (esclusi dal D.P.R. 54 del 14.01.1997), i sorbetti di frutta o altro e anche la categoria dei semifreddi in quanto rientrano tra le preparazioni tradizionali della gelateria artigianale.
Il gelato viene prodotto impiegando il latte e suoi derivati, uova, vari tipi di zuccheri, miele, acqua potabile, frutta, burro, grassi vegetali, aromi e prodotti alimentari coloranti. Dopo l’indurimento può essere esposto direttamente nelle vetrine per la vendita oppure conservato per alcuni giorni nei frigoriferi o armadi frigo.
Il prodotto finito può essere guarnito con vari prodotti quali frutta intera, salse a base di frutta, biscotti, decorazioni varie, ecc. allo scopo di migliorarne la presentazione. Per le guarniture e decorazioni è necessario prevenire il pericolo di contaminazioni mediante una accurata verifica delle condizioni igieniche al ricevimento, con uno stoccaggio adeguato e con l’uso di materiali non tossici e approvati.
Il gelato venduto a ristoranti e/o mense deve essere conservato e trasportato nel rispetto della catena del freddo.
Il gelato è consumato da ogni tipologia di consumatori e quindi si deve tener presente la maggiore o minore sensibilità del consumatore nei confronti dei possibili pericoli di tipo igienico che ogni produttore è tenuto a tenere sotto controllo.
Per i prodotti della gelateria artigianale le possibilità che i pericoli individuati possano nuocere alla salute dei consumatori devono essere valutate prendendo in considerazione i consumatori maggiormente esposti ad utilizzi non idonei o non in grado di percepire i pericoli facilmente rilevabili, come i bambini e gli anziani, ad esempio.
In generale non sono stati riscontrati casi di allergie o altro in concomitanza a malattie presenti o stati patologici particolari. Sono possibili casi di intolleranza al lattosio per i prodotti che contengono quantità significative di latte, e fenomeni allergici legati alla frutta fresca o ad eventuali additivi aggiunti.
Diagramma di flusso e descrizioni delle fasi del processo

Costruire il diagramma di flusso
Il diagramma di flusso dovrebbe essere costruito dal gruppo HACCP. Ogni fase all’interno dell’area specificata di attività, dovrebbe essere analizzata per la parte particolare dell’attività presa in considerazione per produrre il diagramma di flusso. Nell’applicare l’HACCP ad una certa attività, dovrebbero essere fatte considerazioni sulle fasi precedenti e successive l’attività in questione.

Verifica del diagramma di flusso
Il gruppo HACCP dovrebbe verificare l’attività di lavorazione confrontandola al diagramma di flusso durante tutte le fasi e tutte le ore di attività in modo da migliorare il diagramma di flusso dove appropriato.

Costruire un diagramma di flusso per ogni linea di produzione significa racchiudere all'interno di alcune tappe tutte le operazioni che si effettuano durante la preparazione e lavorazione dei prodotti della gelateria. Il limite di applicazione di questa razionalizzazione del processo di produzione deve essere individuato considerando l'acquisto delle materie prime fino alla vendita dei prodotti finiti.
Nel diagramma di flusso le operazioni di lavorazione sono collocate in sequenza, in modo tale da facilitare e rendere ancora più completa l'individuazione dei potenziali pericoli igienici dovuti a carenza di organizzazione e del logico svolgimento delle operazioni.
In genere i diagrammi di flusso devono riportare almeno la sequenza delle fasi della lavorazione.
Si riportano di seguito alcuni esempi di diagrammi di flusso arricchiti di alcune informazioni sulla conservazione delle materie prime utilizzate e degli impianti utilizzati nelle tappe di lavorazione.
Le procedure di pulizia, di manutenzione e di igiene del personale devono essere applicate ad ognuna delle tappe di lavorazione individuate.
Negli esempi di procedure HACCP si possono trovare altri esempi di diagrammi di flusso aventi la funzione di spiegare ai gelatieri artigiani tutte le attività necessarie per l'adozione dell'autocontrollo igienico.
Diagramma di flusso della produzione del gelato a base di latte

MAGAZZINO FRESCO
- Zuccheri
- Latte in polvere magro
- Cacao in polvere
- Tuorlo d'uovo fresco
- Latte pastorizzato
- Panna
- Acqua

FRIGORIFERO +4°C
- Panna montata
- Coni e cialde

Conservazione materie prime

Desaggio

Miscelazione

Pastorizzazione

Maturazione

Mantecazione

Indurimento

Conservazione prodotto finito

Distribuzione e vendita

Procedura di pulizia e sanificazione

Procedura di manutenzione

Procedura di igiene del personale (GMP)

Aria

BANCO VENDITA

FRIGORIFERO +4°C

MAGAZZINO FRESCO
Diagramma di flusso della produzione del sorbetto alla frutta

Ricevimento materie prime

Stoccaggio materie prime

Dosaggio

Pastorizzazione sciroppo

Conservazione sciroppo

Miscelazione

Mantecazione

Indurimento

Conservazione prodotto finito

Distribuzione e vendita

Procedura di pulizia e sanificazione

Procedura di manutenzione

Procedura di igiene del personale (GMP)
Diagramma di flusso della produzione del semifreddo

Individuazione dei pericoli

Il gruppo HACCP dovrebbe elencare tutti i pericoli biologici, chimici o fisici che ragionevolmente ci si può attendere si verifichino ad ogni fase e descrivere le misure preventive che possono essere adottate per controllare questi pericoli. Successivamente il gruppo HACCP deve analizzare ogni singolo pericolo.
Per essere inclusi nella lista, i pericoli devono essere di natura tale che la loro eliminazione o riduzione a livelli accettabili, sia essenziale per la produzione di alimenti sicuri.

Il gruppo deve poi considerare quali misure preventive, se ne esistono, possono essere applicate per ogni pericolo.

Le misure preventive sono quelle azioni ed attività che sono richieste per eliminare i pericoli o ridurre il loro impatto o l’evenienza a livelli accettabili. Più di una misura preventiva può essere richiesta per controllare un pericolo specifico e più di un pericolo può essere controllato da una specificata misura preventiva.

I pericoli associati alla produzione e vendita del gelato artigianale provengono dalle materie prime, dal personale, dagli ambienti di lavorazione, dalle attrezzature e dal non rispetto delle operazioni di fabbricazione.

L’alimento può essere contaminato dal contatto con altri alimenti, dai materiali di imballaggio o dai contenitori, dalla manipolazione degli alimenti ad opera del personale, da parassiti e infestanti, da prodotti chimici e corpi estranei.

La ricerca dell’esistenza di un qualsiasi pericolo legato alla produzione di un alimento ha inizio necessariamente dallo studio approfondito delle tappe della lavorazione, individuando tutte le operazioni svolte e le procedure applicate.

Lo scopo di questa ricerca è quello di ottenere un diagramma di flusso delle azioni svolte che identifichi e riassuma tutto ciò che si compie per la preparazione dei prodotti di gelateria artigianale.

E’ fondamentale definire in maniera inequivocabile le modalità di esecuzione delle operazioni: ad esempio quando si riporta il termine “trasferimento” si deve considerare il percorso del prodotto all’interno del locale, il contenitore utilizzato e le possibilità di contaminazione da parte del personale.

La conoscenza delle materie prime, della tecnologia, delle attrezzature impiegate e delle caratteristiche del prodotto finito porta necessariamente ad individuare quali elementi hanno la probabilità di provocare un danno alla salute del consumatore.

L’individuazione quindi dei potenziali pericoli può essere ottenuta ricercando tutte le possibilità di contaminazione fisica, chimica e microbiologica dell’alimento, oppure può essere guidata dalla conoscenza di dati storici sulle intossicazioni ed infezioni alimentari e sulle caratteristiche di crescita e sviluppo di microrganismi patogeni.

Un esempio di carattere generale sulle possibili cause associate all’insorgenza di alcuni pericoli è riportato in tabella:

<table>
<thead>
<tr>
<th>Pericolo</th>
<th>Possibili cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>metalli</td>
<td>rottura utensili, presenti nelle confezioni delle materie prime</td>
</tr>
<tr>
<td>carta</td>
<td>apertura confezioni</td>
</tr>
<tr>
<td>plastica</td>
<td>apertura confezioni</td>
</tr>
<tr>
<td>gioielli</td>
<td>non rispetto delle GMP da parte del personale</td>
</tr>
<tr>
<td>Contamin</td>
<td>bottoni</td>
</tr>
</tbody>
</table>
L’obiettivo del metodo HACCP è la salvaguardia della salute del consumatore che nel caso dei prodotti alimentari si applica principalmente alle azioni rivolte all’eliminazione o alla riduzione delle contaminazioni di tipo microbico.
Ogni produttore deve quindi essere a conoscenza delle tipologie e delle condizioni di contaminazione e sviluppo di alcuni microrganismi patogeni e di come possono svolgere la loro azione di tossinogenesi, come peraltro devono essere a conoscenza dei fattori che possono contrastare l’insorgenza di queste contaminazioni.

Origini delle principali infezioni alimentari
Le principali cause sono di origine biologica e possono essere attribuite a batteri, virus e micotossine.
Ognuno di questi può divenire pericoloso qualora si verifichi la concomitanza di alcune condizioni che possono favorirne la contaminazione e lo sviluppo.
A questo proposito si deve tener presente che alcuni batteri devono raggiungere una presenza numerica sufficiente per manifestare effetti pericolosi per la salute, mentre altri come i virus possono rappresentare un pericolo per la salute anche in numero ridotto.
Nelle seguenti note vengono riportate alcune notizie sui microrganismi maggiormente imputati quali causa di infezioni o intossicazioni alimentari.
I germi ascrivibili al genere *Salmonella* provocano, se ingeriti con l’alimento, diarrea, vomito e forti dolori gastrici; i sintomi associati a tale infezione possono perdurare anche parecchi giorni. Molti animali selvatici e domestici sono portatori di tali germi e quindi possono essere buoni vettori. Frequentemente è la contaminazione del pollame e delle uova e quindi è buona norma per chi manipola uova lavarsi accuratamente le mani prima di toccare altri alimenti e fare attenzione alla pulizia e disinfezione delle superfici e degli utensili che vengono a contatto con i gusci. Se l’uovo è conservato per troppo tempo senza controllo della temperatura, le salmonelle possono moltiplicarsi e raggiungere proporzioni pericolose per la salute umana. Per le preparazioni che non subiscono processi di riscaldamento termico è consigliato pertanto l’utilizzo, in forma pasteurizzata, di uova, albumi o tuorli. Anche l’uomo può essere portatore asintomatico di *salmonella*.

Tra i fattori di prevenzione, fondamentale è lo stato di salute di chi manipola gli alimenti, buono stato che viene assicurato da visite mediche obbligatorie e dalla lotta contro gli infestanti eseguita mediante programmi ben definiti.

Staphylococcus aureus è un batterio in grado di produrre una tossina che provoca vomito violento e diarrea. Gli stafilococchi sono veicolati principalmente dalle secrezioni nasali o faringee e dalle ferite cutanee di persone che manipolano alimenti. La presenza di lesioni e infezioni cutanee, come tutte le secrezioni potenzialmente infette, sono motivo di esonero dal lavoro di soggetti che manipolano alimenti, esonero valido fino alla guarigione. Una accurata igiene personale costituisce la prima e la più efficace barriera alla diffusione del microrganismo, soprattutto se si tiene presente che la tossina resiste ai trattamenti termici di pasteurizzazione, e lo sviluppo dei germi è bloccato dalle basse temperature.

Listeria monocytogenes è un batterio che provoca nelle prime fasi dell’infezione sintomi simili ad un raffreddore, mentre nei casi più gravi può provocare pericolose meningiti. È’ un batterio molto diffuso e diventa pericoloso quando la carica infettante è molto elevata; il raggiungimento di una elevata concentrazione è possibile anche a basse temperature, per cui la refrigerazione dell’alimento non assicura un controllo adeguato della contaminazione. *L. monocytogenes* viene facilmente distrutta dai trattamenti termici di pasteurizzazione. Per controllare la diffusione e moltiplicazione del germi è importante acquistare materie prime fresche, controllare il rispetto dei termini minimi di conservazione e garantire la continuità della catena del freddo durante il trasporto e la conservazione.

Bacillus cereus è un batterio la cui patogenesi è caratterizzata da nausea, crampi e diarrea. Gli alimenti a rischio possono essere anche i preparati a base di polveri come le creme, i budini e le salse che sono state cotte, in quanto B. cereus ha la capacità di formare spore, che lo mantengono vitale anche a temperature elevate. Ad un ripristino delle condizioni di sviluppo favorevoli il *Bacillus* germina e si moltiplica. In genere la sua presenza è legata ad errori nel controllo della temperatura di alimenti cotti e pertanto le azioni preventive si basano sul raffreddamento rapido dell’alimento dopo la cottura e sul controllo della temperatura di refrigerazione.

Il genere *Shigella* comprende microrganismi ad habitat intestinale che provocano dissenteria essendo produttori di una potente enterotossina. I batteri sono veicolati...
principalmente dall’acqua, è importante quindi utilizzare unicamente acqua potabile per la preparazione dell’alimento ed evitare la manipolazione degli stessi da parte di personale malato o affetto da disturbi intestinali. I trattamenti termici sono in grado di controllare lo sviluppo di tali germi.

Alcuni ceppi di *Escherichia coli* possono essere patogeni. Il fattore di prevenzione principale è la cottura degli alimenti ed il controllo delle contaminazioni crociate tra alimenti crudi e cotti.

Clostridium botulinum è un batterio sporigeno molto resistente alle alte temperature; la sua patogenicità viene espletata mediante la produzione di una potente tossina. Questa tossina provoca stordimenti e paralisi in quanto attacca il sistema nervoso centrale. Gli alimenti a rischio sono le conserve poco acide e gli alimenti conservati sottovuoto in quanto il germe si sviluppa in assenza di ossigeno. La presenza di *C. botulinum* in un alimento è spesso associata ad una scorretta preparazione degli stessi e all’integrità delle confezioni. Il rigonfiamento delle confezioni può essere un segnale della presenza del microrganismo e quindi tali confezioni vanno immediatamente eliminate.

I *virus* come altri microrganismi possono essere presenti negli alimenti e occasionalmente causare malattia nei consumatori. Le uniche malattie virali per le quali negli ultimi anni è stato dimostrato un alimento come veicolo sono l’epatite A e le gastroenteriti virali. L’uomo è, nello specifico caso, l’unica sorgente di infezione e pertanto fondamentale per la prevenzione è il rispetto delle norme di igiene personale. E’ importante sottolineare che i virus non si moltiplicano negli alimenti o nell’ambiente ma resistono molto bene alle temperature di refrigerazione e congelamento, oltre che a valori di pH molto bassi. I trattamenti termici di cottura e di pastorizzazione sono efficaci nell’eliminare il pericolo di infezioni di origine virale e pertanto si dovranno prevenire eventuali contaminazioni crociate.

Le *micotossine* sono sostanze prodotte da muffe che crescono sugli alimenti mal conservati e in degradazione. Sono spesso presenti nella frutta secca conservata in confezioni non intatte o in condizioni di elevata umidità e temperatura. Essendo molti dei prodotti a rischio (nocciole, noci, ecc.) aggiunti nel prodotto finito risultano fondamentali il controllo delle materie prime al momento del ricevimento e l’idoneità degli ambienti di conservazione.

Alcune dati sui fattori di sviluppo di alcuni microrganismi pericolosi per la salute dell’uomo e sulle caratteristiche degli alimenti che influenzano questo possibile sviluppo sono riportate nelle tabelle seguenti.

<table>
<thead>
<tr>
<th>Patogeni</th>
<th>Fattori di sviluppo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperatura</td>
</tr>
<tr>
<td></td>
<td>min</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>5</td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
<td>25</td>
</tr>
<tr>
<td>Clostridium</td>
<td>10</td>
</tr>
<tr>
<td>Alimento</td>
<td>aw</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Burro</td>
<td>0.75 - 0.84</td>
</tr>
<tr>
<td>Latte condensato zuccherato</td>
<td>0.83 - 0.93</td>
</tr>
<tr>
<td>Cioccolato</td>
<td>0.40 - 0.50</td>
</tr>
<tr>
<td>Cacao</td>
<td>< 0.60</td>
</tr>
<tr>
<td>Biscotti</td>
<td>0.30 - 0.50</td>
</tr>
<tr>
<td>Nocciole tostate</td>
<td>0.40 - 0.50</td>
</tr>
<tr>
<td>Cereali essiccati</td>
<td>0.30 - 0.50</td>
</tr>
<tr>
<td>Uova intere fresche</td>
<td></td>
</tr>
<tr>
<td>Prodotti congelati</td>
<td></td>
</tr>
<tr>
<td>Frutta fresca</td>
<td>2.5 - 5.5</td>
</tr>
<tr>
<td>Miele</td>
<td>0.54 - 0.75</td>
</tr>
<tr>
<td>Sciroppi di frutta</td>
<td>0.60 - 0.85</td>
</tr>
</tbody>
</table>
Le esigenze cogenti sono le prime da rispettare; a queste possono aggiungersi i requisiti richiesti dai contratti di vendita oppure alcune specifiche di tipo volontario. In ogni caso si dovrà tenere presente che il mancato rispetto delle procedure di pulizia e sanificazione, dell’applicazione della procedura di igiene del personale e della procedura di manutenzione portano inesorabilmente all’insorgere di potenziali pericoli per la salute del consumatore.

Inoltre considerando le modalità di svolgimento delle singole operazioni e le caratteristiche delle attrezzature impiegate si possono elencare i pericoli associati. Per ogni pericolo deve essere associata almeno una causa che in qualche maniera può essere posta sotto controllo da un’azione, una misura o una procedura. Più di una azione di controllo di tipo preventivo può essere richiesta per il controllo di un pericolo e più di un pericolo può essere controllato con la stessa azione di controllo.

Nella descrizione della tecnologia di lavorazione sono state fornite indicazioni sui possibili pericoli associati alle operazioni svolte nei laboratori di gelateria artigianale; queste informazioni dovranno essere prese in considerazione a seconda della tipologia dei prodotti, delle modalità di produzione e delle attrezzature impiegate. Per facilitare la comprensione e l’utilizzo di questo manuale si riportano alcuni esempi sull’identificazione dei pericoli nella produzione della gelateria artigianale negli esempi di procedure HACCP.

Valutazione dell’indice di pericolosità

Di ciascun pericolo è opportuno valutare la probabilità di comparsa (rischio) e la gravità (incidenza su un potenziale consumatore) per poter ottenere dalla combinazione dei due fattori (rischio x gravità) un Indice di Pericolosità utile per definire una gerarchizzazione dell’attività di prevenzione. Nell’effettuare la valutazione del rischio bisogna tenere in giusto conto i fattori che influenzano la probabilità di comparsa del pericolo, quindi ciascun pericolo ha un suo rischio, più o meno elevato in funzione della tipologia dell’alimento, del processo produttivo, dell’addestramento del personale, della destinazione d’uso, ecc.

Nella successiva tabella vengono definiti gli indici di pericolosità e quindi le priorità di intervento rispetto alle contaminazioni di tipo particellare, chimica e biologica del gelato artigianale: l’esempio riportato è del tutto indicativo in quanto ogni gelateria dovrebbe valutare indici appropriati.

<table>
<thead>
<tr>
<th>Classe di</th>
<th>Pericolo</th>
<th>Gravità</th>
<th>Rischio</th>
<th>Indice</th>
</tr>
</thead>
</table>

Indice di Pericolosità

\[\text{Indice di Pericolosità} = \text{Gravità} \times \text{Rischio} \]
<table>
<thead>
<tr>
<th>pericolo</th>
<th>alla</th>
<th>di</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminazione particellare</td>
<td></td>
<td>pericolosità</td>
</tr>
<tr>
<td>metalli dagli utensili</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>carta dalle confezioni</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>plastica dagli imballaggi</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>gioielli dal personale</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>bottino dall’abbigliamento</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>terra dalla frutta</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>smaltature dagli utensili</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Contaminazione chimica</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>residui di detergenti, disinfettanti</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>residui di fitofarmaci</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Contaminazione biologica</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>da mammiferi e uccelli (ratti, topi, cani, uccelli, gatti, ...)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>da insetti (blatte, mosche, ecc.)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>da microrganismi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Listeria monocytogenes</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>• Salmonella spp.</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>• Staphylococcus aureus</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>• Coliformi</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>• Tenore di germi</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Questa graduatoria dei pericoli è utile ai fini di una corretta applicazione dei principi di igiene solamente se vengono posti dei limiti di intervento:

<table>
<thead>
<tr>
<th>Indice pericolosità</th>
<th>Livello</th>
<th>Azione preventiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < I.P. ≤ 1</td>
<td>Modesto</td>
<td>Non necessaria</td>
</tr>
<tr>
<td>1 < I.P. < 3</td>
<td>Medio</td>
<td>Consigliabile</td>
</tr>
<tr>
<td>3 ≤ I.P. ≤ 9</td>
<td>Elevato</td>
<td>Necessaria</td>
</tr>
</tbody>
</table>

Individuazione dei punti di controllo critici

L’identificazione di un CCP nel sistema HACCP è facilitata applicando l’albero delle decisioni. Dovrebbero essere considerati tutti i pericoli che ci si può ragionevolmente attendere succedano o che possano essere introdotti ad ogni fase. Può essere necessario un addestramento nell’applicazione dell’albero delle decisioni. Se un pericolo è stato identificato ad una fase dove il controllo è necessario per la sicurezza, e non esistono misure preventive a quella fase, o qualsiasi altra misura, allora il prodotto o il processo a quella fase dovrebbe essere modificato, o in qualsiasi fase più vicina o più lontana, in modo da includere una misura preventiva.
L’applicazione dell’albero delle decisioni determina anche se una fase è un CCP per il pericolo identificato. Tale applicazione dovrebbe essere flessibile, a seconda che l’attività in esame riguardi la produzione, la macellazione, l’immagazzinaggio, la distribuzione o altro.

L’individuazione dei punti critici di controllo può essere agevolata utilizzando l’albero delle decisioni.
In questo manuale è riportato sottoforma tabulare in modo da evidenziare le azioni intraprese per il corretto controllo del pericolo individuato.
La prima cosa da fare è riportare le tappe della lavorazione e le singole operazioni che compongono ogni fase di lavorazione in un diagramma di flusso.
Unitamente alle operazioni devono essere riportati i pericoli individuati precedentemente.
L’albero delle decisioni è un percorso logico che mediante una serie di domande collegate tra loro aiutano a riconoscere all’interno di un processo produttivo i punti da tenere sotto controllo affinché tale processo non si discostisca dal suo percorso definito.
Occorre precisare che i CCP non corrispondono necessariamente a punti in cui si abbia una elevata probabilità di incorrere in un pericolo o in altre parole ai punti in cui, se ci limitiamo ai pericoli di origine microbica, si manifesta un’elevata contaminazione.
Le domande D1, D1bis, D2, D3 e D4 possono avere due risposte: sotto la casella della risposta SI/NO viene indicata la successiva domanda oppure se la tappa o l’operazione è stata riconosciuta come un CCP o meno.
In questo esempio si considerano le operazioni più frequenti nei laboratori di gelateria artigianale; le risposte alle domande sono indicate con una X, mentre le caselle con fondo grigio rappresentano le operazioni che devono essere gestite come un CCP. L’ultima colonna della tabella che risponde alla domanda D4 specifica l’azione che è in grado di tenere sotto controllo il pericolo associato alla tappa; in questo modo si evidenzia che i numerosi CCP individuati sono rappresentati dalle tappe appositamente previste per eliminare o ridurre il pericolo e dalle procedure di pulizia, di manutenzione e di igiene del personale.
L’individuazione dei CCP attraverso l’utilizzo dell’albero delle decisioni deve riguardare la singola realtà artigianale. Negli esempi delle procedure HACCP si riportano i risultati di tale analisi tralasciando di riportare il percorso decisionale seguito per l’individuazione dei CCP per tutte le tipologie dei prodotti.
<table>
<thead>
<tr>
<th>TAPPA Operazione</th>
<th>PERICOLO</th>
<th>D1</th>
<th>D1 bis</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOCCA GGIO</td>
<td>Non rispetto specifiche Contaminazione e molt. microbica dall’ambiente</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
</tr>
<tr>
<td>Ricevimento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservazione</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOSAGG IO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D1
Esistono azioni di controllo per il pericolo individuato?

D1 bis
Per la sicurezza del prodotto è necessario porre sotto controllo tale tappa del processo?

D2
Tale tappa del processo è stata appositamente prevista per eliminare il pericolo o ridurne la probabilità di comparsa ad un livello accettabile?

D3
Potrebbe una contaminazione, relativa al pericolo individuato, manifestarsi a livelli superiori a quelli accettabili o aumentare fino a livelli inaccettabili?

D4
Una successiva tappa del processo riuscirà ad eliminare il pericolo considerato o ridurne la probabilità di comparsa ad un livello accettabile?

- SI
- NO

Modifica la tappa, il processo o il prodotto
- STOP La tappa **non è un CCP**
- STOP La tappa **è un CCP**

Rispondi alla domanda D3
- STOP La tappa **non è un CCP**

Tenere sotto controllo la tappa individuando uno o più CCP

- procedura pulizia e sanificazione
- procedura manutenzione

- X
| Bilanciamento | Minore conservabilità | X | X | X | X | X | X | • procedura pulizia e sanificazione | • procedura igiene personale | • procedura rintracciabilità | • procedura pulizia e sanificazione |
| Dosaggio | Contaminazione microbica dal personale e dall’ambiente | X | | | | | |
| | Contaminazione particellare confezioni | X | | | | | |
| | Utilizzo prodotti scaduti | X | | | | | |
| MISCEL AZIONE | Contaminazione microbica dal personale, dall’ambiente e dagli impianti, residui detergenti | X | X | X | X |
| PASTORIZZAZIONE | Contaminazione microbica dagli impianti, residui detergenti | X | X | | | |
| MATURAZIONE | | | | | | |

65
Trasferimento	Contaminazione microbica dal personale, dall’ambiente e dai contenitori	X						• procedura pulizia e sanificazione	
Maturazione	Contaminazione e multipl. microbica dagli impianti, residui detergents	X	X	X				• procedura pulizia e sanificazione	
MANTEC AZIONE Trasferimento	Contaminazione microbica dal personale, dall’ambiente e dai contenitori	X	X	X				• procedura pulizia e sanificazione	
Mantecazione	Contaminazione e multipl. microbica dagli impianti, residui detergents	X	X	X				• procedura pulizia e sanificazione	
INDURIMENTO								• procedura pulizia e sanificazione	
Trasferimento	Contaminazione microbica dal personale e dai contenitori	X	X	X	X	X	• procedura pulizia e sanificazione		
Contaminazione microbica dagli impianti, residui detergenti	X								
Indurimento	Contaminazione microbica dal personale e dai contenitori	X	X	X	X				
Contaminazione microbica dagli impianti, residui detergenti	X								
CONSERVAZIONE	Contaminazione microbica dai contenitori	X	X	X	X				
Contaminazione microbica dagli impianti, residui detergenti	X								
Trasferimento									
Conservazione									
VENDITA	Contaminazione microbica dai contenitori	X	X	X					

| Trasferimento | Contaminazione microbica dal personale e dai contenitori | X | X | X | X | X | • procedura pulizia e sanificazione
Contaminazione microbica dagli impianti, residui detergenti	X				
Indurimento	Contaminazione microbica dal personale e dai contenitori	X	X	X	X
Contaminazione microbica dagli impianti, residui detergenti	X				
CONSERVAZIONE	Contaminazione microbica dai contenitori	X	X	X	X
Contaminazione microbica dagli impianti, residui detergenti	X				
Trasferimento					
Conservazione					
VENDITA	Contaminazione microbica dai contenitori	X	X	X	

| Trasferimento | Contaminazione microbica dal personale e dai contenitori | X | X | X | X | X | • procedura pulizia e sanificazione
Contaminazione microbica dagli impianti, residui detergenti	X				
Indurimento	Contaminazione microbica dal personale e dai contenitori	X	X	X	X
Contaminazione microbica dagli impianti, residui detergenti	X				
CONSERVAZIONE	Contaminazione microbica dai contenitori	X	X	X	X
Contaminazione microbica dagli impianti, residui detergenti	X				
Trasferimento					
Conservazione					
VENDITA	Contaminazione microbica dai contenitori	X	X	X	

| Vendita | Contaminazione e molt. microbica dagli impianti e dal personale | X | | X | X | | | | | | | | - procedura pulizia e sanificazione | - procedura igiene personale |
I CCP individuati sono riconducibili ai parametri di tempo e temperatura adottati per la pastorizzazione della miscela e per la sua maturazione, all’impiego di ingredienti non sottoposti a pastorizzazione, a tutti i contatti a cui sono soggetti la miscela e il prodotto finito dopo il trattamento termico nei vari impianti ed attrezzature, allo stato igienico delle confezioni e alle temperature di conservazione del prodotto finito, sia nella vetrina di vendita sia nei frigoriferi.

La procedura di pulizia e sanificazione di impianti, attrezzature e ambienti, come pure il rispetto della procedura di igiene del personale (GMP) sono da considerarsi dei CCP, e quindi in questo caso si parla di qualifica o validazione di queste procedure.

La validazione della procedura di pulizia si ottiene mediante la verifica dell’efficacia della stessa con analisi di tipo microbiologico e chimico-fisico e loro registrazione per dar prova della sua effettiva applicazione a frequenze programmate; le GMP devono essere supportate dall’addestramento del personale e dalla dimostrazione della loro effettiva applicazione.

Ad ogni CCP individuato sono associati alcuni parametri di controllo con i relativi limiti critici che permettono di delimitarne l’accettabilità e l’inaccettabilità.

Monitoraggio

Stabilire i limiti critici per ogni CCP

| Devono essere specificati limiti critici per ogni misura preventiva. In alcuni casi più di un limite critico sarà elaborato ad una fase particolare. Il criterio spesso utilizzato comprende misure di temperatura, tempo, livello di umidità, pH, Aw (attività dell’acqua), cloro disponibile e parametri sensoriali come l’apparenza visiva e la struttura. |

Il limite critico è un valore derivato dalla quantificazione di un parametro tramite un’adeguata misurazione strumentale o alla valutazione di una caratteristica del processo, ad esempio legata alla corretta osservanza delle norme igieniche da parte del personale.

I livelli di attenzione sono valori che derivano dalle stesse misurazioni dei limiti critici, utilizzati per garantire che i limiti critici stessi siano rispettati. Questi livelli di attenzione permettono di segnalare, e quindi di correggere, una tendenza di deriva di un’attività verso la perdita di controllo che verrà raggiunta in corrispondenza del limite critico.

Stabilire un sistema di monitoraggio per ogni CCP

| Il monitoraggio è una misurazione od osservazione programmata di un CCP relativa ai suoi limiti critici. Le procedure di monitoraggio devono essere in grado di rilevare perdite di controllo al CCP. Inoltre, il monitoraggio dovrebbe idealmente fornire questa informazione in tempo affinché venga intrapresa un’azione correttiva atta a ristabilire il controllo del processo prima che avvenga la necessità di rifiutare (scartare) il prodotto. |
dati derivati dal monitoraggio devono essere valutati da una persona designata avente la conoscenza e l’autorità per intraprendere le azioni correttive quando indicato. Se il monitoraggio non è continuo, l’ammontare o la frequenza dello stesso deve essere sufficiente a garantire che il CCP sia sotto controllo. La maggior parte delle procedure di monitoraggio per i CCP dovranno essere fatte rapidamente in quanto si riferiscono a processi in linea e non ci sarà il tempo per prove analitiche lente. Sovente, misure chimiche e fisiche sono preferite alle analisi microbiologiche in quanto possono essere fatte velocemente e possono spesso indicare la situazione microbiologica del prodotto.

Tutti i dati da conservare ed i documenti associati al monitoraggio dei CCP devono essere vistati dalle persone che eseguono il monitoraggio e dal responsabile del riesame del sistema designato dalla Direzione.

E’ importante che l’attività di monitoraggio, tramite una serie di misure programmate od osservazioni, consenta di rivelare in tempo utile qualsiasi anomalia del processo, in modo tale da poter intervenire prima di generare una non conformità. Deve essere descritta l’attività di monitoraggio, eventualmente corredata da istruzioni scritte da riportare nel luogo ove avviene quella specifica fase del processo di produzione, relativa alla misura o all’osservazione da effettuare.

La frequenza del monitoraggio sarà stabilita in base all’efficacia dello stesso nel rilevare e quindi correggere possibili anomalie nel processo.

<table>
<thead>
<tr>
<th>Monitoraggio</th>
<th>Frequenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controllo Visivo</td>
<td>Continuo</td>
</tr>
<tr>
<td>Misura temperatura</td>
<td>Ogni ciclo di pastorizzazione</td>
</tr>
</tbody>
</table>

Esempi di moduli per la raccolta dei dati del monitoraggio

<table>
<thead>
<tr>
<th>Data</th>
<th>RICEVIMENTO MATERIE PRIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specifiche materie prime</td>
</tr>
<tr>
<td></td>
<td>Microbiologico</td>
</tr>
<tr>
<td></td>
<td>Sensoriale</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Contaminazione da residui chimici</td>
<td>Richiedere i dati dell’analisi di pesticidi e antiparassitari o certificati che attestano l’assenza di contaminanti di tipo chimico.</td>
</tr>
<tr>
<td>Confezioni ed imballaggi</td>
<td>Verifica dell’integrità, dell’adeguatezza e dello stato igienico delle confezioni. Sulle confezioni il produttore deve riportare le modalità d’uso e di conservazione da rispettare.</td>
</tr>
<tr>
<td>Tecnologia di produzione, metodo di raccolta e coltivazione, confezionamento</td>
<td>Acquisire le notizie sui metodi di ottenimento delle materie prime allo scopo di riconoscerne i possibili pericoli.</td>
</tr>
<tr>
<td>Trasporto</td>
<td>Al ricevimento misura della temperatura, dello stato igienico e della presenza di altri prodotti dei veicoli adibiti al trasporto.</td>
</tr>
<tr>
<td>Rintracciabilità</td>
<td>E’ consigliata anche la registrazione del numero di lotto soprattutto dei prodotti aggiunti dopo la pastorizzazione o che non hanno subito alcun processo di risanamento.</td>
</tr>
<tr>
<td>Disposizioni di legge</td>
<td>Verificare l’esistenza dell’etichettatura a norma di legge e delle disposizioni specifiche relative ad ogni tipologia di prodotto. Verificare per quanto possibile il rispetto della catena del freddo per i prodotti che lo esigono.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calendario Pulizia</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Impianti</td>
<td>Pastorizzatore</td>
</tr>
<tr>
<td></td>
<td>Mantecatore</td>
</tr>
<tr>
<td></td>
<td>Maturatore</td>
</tr>
<tr>
<td></td>
<td>Frigorifero abbatitore</td>
</tr>
<tr>
<td></td>
<td>Frigorifero materie prime</td>
</tr>
<tr>
<td></td>
<td>Montapanna</td>
</tr>
<tr>
<td></td>
<td>Lavautensili</td>
</tr>
<tr>
<td>Pavimenti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pastorizzatore</td>
</tr>
<tr>
<td></td>
<td>Mantecatore</td>
</tr>
<tr>
<td></td>
<td>Maturatore</td>
</tr>
<tr>
<td></td>
<td>Frigorifero abbatitore</td>
</tr>
<tr>
<td></td>
<td>Frigorifero materie prime</td>
</tr>
<tr>
<td></td>
<td>Montapanna</td>
</tr>
<tr>
<td></td>
<td>Lavautensili</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>M</th>
<th>M</th>
<th>G</th>
<th>V</th>
<th>S</th>
<th>D</th>
<th>L</th>
<th>M</th>
<th>M</th>
<th>G</th>
<th>V</th>
<th>S</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

71
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulizia condensatore raffredd. ad aria</td>
<td></td>
</tr>
<tr>
<td>Pulizia dietro/sotto</td>
<td></td>
</tr>
<tr>
<td>Pulizia interna accurata</td>
<td></td>
</tr>
<tr>
<td>Pulizia guarnizioni</td>
<td></td>
</tr>
<tr>
<td>Pulizia vaschetta condensa</td>
<td></td>
</tr>
<tr>
<td>Controllo temperatura -18°C, -20°C</td>
<td></td>
</tr>
<tr>
<td>Temperatura massima durante</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Sicurezze infortuni</td>
<td></td>
</tr>
<tr>
<td>Carica gas</td>
<td></td>
</tr>
<tr>
<td>Pulizia interna macchina</td>
<td></td>
</tr>
<tr>
<td>Tempo di raffreddamento da 85°C a 4°C</td>
<td></td>
</tr>
<tr>
<td>Temperatura pastorizzazione</td>
<td></td>
</tr>
<tr>
<td>Temperatura maturazione</td>
<td></td>
</tr>
<tr>
<td>Sostituzione</td>
<td></td>
</tr>
<tr>
<td>guarnizioni</td>
<td>Tenuta valvola acqua compressore</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Usura tubi gomma carico acqua</td>
<td></td>
</tr>
<tr>
<td>Pulizia condensatore raffredd. ad aria</td>
<td></td>
</tr>
<tr>
<td>Manutenzioni e straordinaria</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Luogo conservazion e libretto istruzioni</th>
<th>Note</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luogo conservazion e ricambi</td>
<td></td>
<td>Firma</td>
</tr>
</tbody>
</table>

MANUTENZIONE E PULIZIA MANTECATORE

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carica gas</td>
<td></td>
</tr>
<tr>
<td>Pulizia interna macchina</td>
<td></td>
</tr>
<tr>
<td>Pulizia giunto motore/agitatore</td>
<td></td>
</tr>
<tr>
<td>Tensione cinghie trasmissione</td>
<td></td>
</tr>
<tr>
<td>Sostituzione pattini agitatore</td>
<td></td>
</tr>
<tr>
<td>Test congelamento o glicole (mant. verticale)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grasso testata mant. verticale)</td>
<td></td>
</tr>
<tr>
<td>Tempo di raffreddamento da 85°C a 4°C</td>
<td></td>
</tr>
<tr>
<td>Temperatura pastorizzazione</td>
<td></td>
</tr>
<tr>
<td>Temperatura maturazione</td>
<td></td>
</tr>
<tr>
<td>Sostituzione guarnizioni</td>
<td></td>
</tr>
<tr>
<td>Tenuta valvola acqua compressore</td>
<td></td>
</tr>
<tr>
<td>Usura tubi gomma carico acqua</td>
<td></td>
</tr>
<tr>
<td>Pulizia condensatore raffredd. ad aria</td>
<td></td>
</tr>
<tr>
<td>Manutenzione straordinaria</td>
<td></td>
</tr>
<tr>
<td>Luogo conservazione e libretto istruzioni</td>
<td>Note</td>
<td></td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luogo conservazione e ricambi</td>
<td></td>
<td></td>
<td>Firma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Queste tabelle sono state ideate per avere sotto controllo la frequenza delle manutenzioni e pulizie da effettuare per una buona efficienza delle attrezzature del laboratorio di gelateria artigianale.
In questo caso gli esempi riportano scadenze mensili per le singole operazioni, ma ciascun laboratorio può adattare le scadenze alle reali caratteristiche degli impianti (grado di utilizzo, età dell’apparecchiatura, tempo di usura di particolari componenti).

- **CARICA GAS:** è il controllo attraverso la spia gas liquido se l’impianto è sufficientemente carico di gas.
- **CONTROLLO TEMPERATURA:** da verificare con termometro.
- **PULIZIA CONDENSATORE:** è la pulizia del condensatore ad aria nelle macchine con questo tipo di raffreddamento.
- **PULIZIA DIETRO/SOTTO:** è la pulizia da effettuare spostando le macchine dalla loro sede.
- **PULIZIA GIUNTO:** è quella pulizia da effettuare nel foro posto in fondo al cilindro dei mantecatori orizzontali dove va ad inserirsi il perno del miscelatore.
- **PULIZIA GUARNIZIONI:** è da effettuare spesso per mantenere morbide le guarnizioni, soprattutto il lato posto in basso.
- **PULIZIA INTERNA ACCURATA:** è la pulizia da effettuare all’interno dei frigoriferi e celle, togliendo tutte le parti smontabili.
- **PULIZIA INTERNA MACCHINA:** è la pulizia da effettuare all’interno della macchina, staccando la tensione e togliendo i pannelli laterali.
- **PULIZIA RACCOGLICONDENSAS:** da effettuare in quella vaschetta normalmente posta sotto il frigorifero atta a raccogliere l’acqua formata dallo sbrinamento.
- **SICUREZZE INFORTUNIO:** è il controllo se le sicurezze che ferma le macchine in caso di emergenza funzionano (es.: il pulsante rosso che ferma la testata del mantecatore verticale, la fermata dell’agitatore aprendo il coperchio del pasteurizzatore, la fermata del mantecatore orizzontale aprendo lo sportello, ecc.)
- **SOSTITUZIONE GUARNIZIONI:** è il controllo dell’efficienza e dello stato di usura delle guarnizioni oppure la loro sostituzione alternata con le guarnizioni di riserva.
- **SOSTITUZIONE PATTINI:** da eseguire nei mantecatori orizzontali.
- **TEMPERATURA DI MATURAZIONE:** è la temperatura di conservazione della miscela dopo la pasteurizzazione, tra +2°C e +4°C da verificare come la pasteurizzazione.
- **TEMPERATURA DI PASTORIZZAZIONE:** è la temperatura di riscaldamento impostata, da controllare con un termometro il cui stato di taratura è stato verificato.
- **TEMPERATURA DI SBRINAMENTO:** è la temperatura misurata all’interno del frigorifero (non sull’evaporatore) alla fine del ciclo di sbrinamento. Può essere di +7/+8°C per i frigoriferi a +2°C e può durare pochi minuti, mentre per i congelatori la temperatura non deve calare più di 3 - 4°C in un arco molto breve di tempo. Da verificare possibilmente con un termometro a registrazione grafica.
• TEMPO RAFFREDDAMENTO: è il tempo minimo che un pastorizzatore o un maturatore impiega per passare dalla fine della fase di riscaldamento alla temperatura di maturazione di +4°C. Questo tempo minimo è fissato per legge, da controllare con un termografo o un orologio.
• TENUTA VALVOLA ACQUA: controllo che la valvola di regolazione dell’acqua non trafili.
• TEST GLICOLE: è il controllo con l’apposito strumento, della temperatura di congelamento del glicole nei mantecatori verticali.
• USURA TUBI GOMMA: controllo della perfetta efficienza delle gomme di carico e scarico di tutte le macchine raffreddate ad acqua.

Tutte queste attività definiscono anche i parametri del monitoraggio che consentono di tenere sotto controllo il processo.

Azioni correttive

Nel sistema HACCP per ogni CCP devono essere sviluppate delle specifiche azioni correttive in modo da correggere le deviazioni quando si verificano. Le azioni devono garantire che il CCP è stato riportato sotto controllo. Le azioni prese devono anche includere adatte disposizioni relative al prodotto alterato. Le deviazioni e le disposizioni date per il prodotto devono essere documentate nel sistema di registrazione da conservare dell’HACCP. Le azioni correttive devono essere intraprese anche quando i risultati del monitoraggio indicano al CCP una tendenza verso perdite di controllo. L’azione dovrebbe essere intrapresa per riportare il processo in controllo prima che la deviazione conduca ad un pericolo per la sicurezza.

Procedure di verifica

Stabilire procedure per verificare che il sistema HACCP stia funzionando correttamente. Metodi di monitoraggio e controllo, procedure e prove, inclusi esempi casuali ed analisi, possono essere usati per determinare se il sistema HACCP stia funzionando correttamente. La frequenza di verifica dovrebbe essere sufficiente per validare il sistema HACCP. Esempi di attività di verifica comprendono:
• esame del sistema HACCP e sue registrazioni;
• esame delle deviazioni e specifiche di prodotto;
• attività per determinare se i CCP sono sotto controllo;
• validazione dei limiti critici stabiliti.

Verifica dei CCP

Tutte le indagini necessarie al controllo e sorveglianza dei CCP, che non forniscono informazioni sulla correzione in tempo reale del processo di produzione, le possiamo definire come verifiche.
Qualsiasi metodologia di indagine è concessa e pertanto si comprendono tutte le attività tipiche del monitoraggio e con piena dignità anche ogni prova, sia di tipo chimico, fisico o microbiologico, che, al di là dei tempi di risposta, sia in grado di fornire informazioni utili sull’iter del processo. In questo caso le determinazioni non sono limitate a parametri di processo o a prodotti intermedi di lavorazione, ma devono interessare anche i prodotti finiti e l’esame dei risultati del monitoraggio per capire l’affidabilità del nostro processo di produzione.

Tra i metodi applicabili si annoverano, in particolare, il prelievo di campioni da analizzare, analisi o prove intensificate in taluni punti critici, analisi intensificate sui prodotti intermedi o su quelli finiti, indagini sulle condizioni di magazzinaggio, di distribuzione e di vendita, e l’analisi statistica delle misurazioni o dei risultati del controllo visivo nell’arco di un certo periodo.

Le procedure di verifica possono consistere nell’ispezione delle operazioni, la convalida dei limiti critici, l’esame delle anomalie, degli interventi correttivi e delle disposizioni prese nei riguardi dei prodotti, la revisione del sistema di autocontrollo e l’esame delle registrazioni.

Tale attività, a differenza del monitoraggio, non è intesa a determinare correzioni in tempo reale del processo ma a permettere correzioni più sostanziali, quali quelle prodotte sia da un riesame del piano che per una riqualificazione dello stesso.

In questo paragrafo possono comparire elenchi di parametri chimici e microbiologici richiesti come requisiti di legge per materie prime, intermedi o prodotti finiti.

Qualifica della tappa di un processo

Per alcune tappe come la procedura di pulizia e sanificazione e l’addestramento del personale sulla conoscenza e applicazione della procedura di igiene del personale (GMP) l’utilità di un monitoraggio basato sul controllo visivo delle azioni di controllo non dimostra l’efficacia delle azioni svolte: infatti non è possibile pensare di effettuare una verifica delle pulizie svolte giornalmente mediante test anche rapidi per la rilevazione di residui di alimenti sulle superfici. Lo stesso problema si presenta nel monitorare l’effettiva adozione da parte del personale delle norme igieniche (GMP).

In questi casi l’efficacia delle azioni di controllo è provata dalla procedura di qualifica. La qualifica di una fase, operazione, tappa, procedura è la dimostrazione della capacità di soddisfare requisiti specificati. Le tappe che possono essere soggette alla qualifica sono la procedura di pulizia e sanificazione e l’addestramento del personale sulla conoscenza e applicazione delle GMP.

Per la procedura di pulizia e sanificazione è necessario assicurare che i materiali impiegati e i metodi utilizzati garantiscono i requisiti di igiene stabiliti per gli impianti, attrezzature e ambienti di lavoro. Ecco quindi che in sostituzione di un pesante controllo di tipo analitico giornaliero si adotta una sorveglianza continua del corretto svolgimento della procedura. A cadenze ad esempio semestrali, seguendo le indicazioni di un preciso piano di campionamento e mediante delle metodiche analitiche stabilite, si verificherà l’efficacia della pulizia negli ambiti previsti.
Le modalità per la qualifica devono essere aggiornate qualora si verifichino dei cambiamenti degli impianti o delle modalità di svolgimento previste.
Per dimostrare invece l’applicazione delle GMP è necessario predisporre un programma di formazione del personale che comprenda la conoscenza dei principi di igiene degli alimenti e una educazione all’applicazione di una corretta prassi igienica. E’ necessario far capire al personale il significato delle operazioni svolte e l’importanza della continua applicazione delle procedure definite. E’ opportuno prevedere in questo ambito la partecipazione a incontri e corsi formativi almeno un volta all’anno; questa attività deve essere registrata e conservata, per dare dimostrazione della formazione ricevuta.
Al fine di aiutare l’applicazione delle regole stabilite può essere utile predisporre alcune informazioni tramite cartelli o segnali sulle azioni da svolgere.
In sintesi le informazioni sulle modalità della qualifica possono essere riassunte nella tabella successiva.

<table>
<thead>
<tr>
<th>Tappa</th>
<th>Modalità della qualifica</th>
<th>Frequenza</th>
<th>Documenti emessi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedura di pulizia e sanificazione</td>
<td>Verifica dello stato di pulizia di impianti, attrezzature, utensili e ambienti mediante analisi microbiologiche di superfici e aria ambientale con metodiche e secondo un piano di campionamento da stabilire (da condursi immediatamente dopo la conclusione dell’attività di sanificazione).</td>
<td>Semestrale</td>
<td>Risultati delle analisi ed eventuali provvedimenti intrapresi</td>
</tr>
</tbody>
</table>
| Addestramento del personale | Predisposizione di un programma di addestramento per il personale del laboratorio finalizzato a specifiche conoscenze dei principi di igiene nelle preparazioni alimentari secondo quanto prescritto nel D.L. 155, e della corretta applicazione delle procedure di pulizia e sanificazione. | Variabile; prevedere almeno la partecipazione ad un corso una volta all’anno | ● Registrazioni delle attività svolte
● Cartellonistica |

Verifica del piano HACCP
La verifica del piano HACCP costituisce l’attività che conclude la costruzione del piano e ne accompagna perennemente l’applicazione per valutare la sua efficacia nel tempo e le conseguenze che, per qualsiasi modifica ad esso, si possono registrare sul risultato finale. Devono essere stabilite le modalità del riesame del piano HACCP relativamente alla frequenza, per esempio annuale, e nei casi di modifiche di prodotti, processi, impianti, ecc.
Un riesame deve comprendere una nuova valutazione dei pericoli e quindi di tutte le attività relative alla sorveglianza dei punti di controllo critici, qualora siano insorte.
modifiche importanti, ad esempio, nella formulazione, produzione o distribuzione dei prodotti.

Gestione prodotti non idonei

Possono essere riconosciuti come prodotti non idonei sia quelli non conformi ai limiti critici stabiliti durante la lavorazione, sia i prodotti finiti, prima della vendita e in distribuzione sul mercato.

Per quest’ultimo caso è opportuno riferirsi ad una procedura di rintracciabilità che definisca le modalità di ritiro dal mercato di prodotti ritenuti pericolosi per i consumatori, in quanto è richiesto dal D.L. n. 155.

Negli altri casi risulta utile documentare il destino di materie prime, intermedi e prodotti finiti prima della vendita, in quanto riconosciuti come non conformi per il consumo. Queste informazioni saranno utili per l’acquisizione di notizie sulle forniture e sulle deviazioni del processo alla verifica del buon funzionamento del piano HACCP.

Procedura di rintracciabilità

Nel D.P.R. 14 gennaio 1997 n. 54, al capitolo 13, punto 2, comma g) si attribuisce al responsabile di un’azienda di produzione la responsabilità di predisporre un sistema di autocontrollo che, in caso di pericolo immediato per la salute, consenta il ritiro dal mercato dei prodotti ottenuti in condizioni tecnologiche simili.

Una tale prescrizione non trova applicazione nella vendita diretta al consumatore di un prodotto sfuso, mentre per i gelatieri che vendono il proprio prodotto a mense o ristoranti deve essere predisposta una procedura per l’attribuzione di una codifica che riconosca il lotto di gelato venduto e una registrazione (es. documento di accompagnamento dei beni) dell’acquirente per agevolarne l’eventuale ritiro.

L’identificazione dei lotti di prodotti deve riguardare la data di produzione e vendita da associare eventualmente alle materie prime impiegate. Questo significherebbe predisporre una scheda di registrazione delle attività di produzione di questo tipo:

<table>
<thead>
<tr>
<th>Data</th>
<th>Ingredienti</th>
<th>n. lotto m.p.</th>
<th>prodotti</th>
<th>n. lotto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Le informazioni necessarie alla compilazione di questa scheda sono l’elenco delle materie prime impiegate (m.p.), con un codice di identificazione in base alla data di arrivo o all’apertura delle confezioni, e l’elenco dei prodotti che sono stati preparati con questa base, con il relativo codice. Questi ultimi dovranno accompagnare il prodotto nelle confezioni vendute.

L’attribuzione di una identificazione alle materie prime è possibile al ricevimento delle stesse, prima dello stoccaggio. In questo caso è utile quanto definito nel capitolo 8.1. in
modo tale da evitare anche di utilizzare prodotti scaduti o aperti e richiusi da molto tempo.

Gestione della documentazione

Definire i dati da conservare e la documentazione

Per l’applicazione del sistema HACCP è essenziale una efficiente ed accurata raccolta di dati. La documentazione delle procedure dell’HACCP a tutte le fasi dovrebbero essere raccolta ed inclusa in un manuale.

E’ necessario stabilire il luogo ed i tempi di conservazione della documentazione in base anche alle prescrizioni di legge riportate nel D.L. n. 155, all’art. 3, comma 3.

La documentazione prodotta nell’ambito di applicazione della metodologia HACCP e quindi per l’autocontrollo aziendale, si distingue sostanzialmente in due tipologie:

<table>
<thead>
<tr>
<th>Informazioni utili per la costruzione dell’autocontrollo aziendale</th>
<th>Documentazione necessaria al fine di dimostrare l’esistenza e l’efficacia dell’autocontrollo aziendale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elenco prodotti</td>
<td>PROCEDURE</td>
</tr>
<tr>
<td>Elenco materie prime</td>
<td>Pulizia e sanificazione impianti e locali</td>
</tr>
<tr>
<td>Elenco fornitori</td>
<td>Manutenzione impianti e locali</td>
</tr>
<tr>
<td>Elenco materiali</td>
<td>Formazione del personale</td>
</tr>
<tr>
<td>Elenco impianti</td>
<td>Disinfestazione e derattizzazione</td>
</tr>
<tr>
<td>Planimetrie dei laboratori</td>
<td>Igiene del personale (GMP)</td>
</tr>
<tr>
<td>Manuali di manutenzione e pulizia impianti</td>
<td>ISTRUZIONI</td>
</tr>
<tr>
<td>Formazione del personale</td>
<td>Misura della temperatura di pastorizzazione</td>
</tr>
<tr>
<td></td>
<td>Compilazione dei moduli di registrazione</td>
</tr>
<tr>
<td></td>
<td>Lavaggio mani, abbigliamento, (applicazione GMP)</td>
</tr>
<tr>
<td></td>
<td>MODULI DI REGISTRAZIONE</td>
</tr>
<tr>
<td></td>
<td>Pastorizzazione (per le aziende strutturate)</td>
</tr>
<tr>
<td></td>
<td>Non Conformità (per le aziende non strutturate)</td>
</tr>
</tbody>
</table>

Nelle imprese artigiane, in cui la gestione quotidiana di un numero elevato di schede può presentare seri problemi di attuazione, con il rischio di compilazione a posteriori o a memoria o peggio ancora mediante l’utilizzo dei parametri indicati sul manuale e non
rilevati direttamente nelle fasi previste (gestione cartacea dell’autocontrollo e non reale controllo dei pericoli) si rende necessario semplificare la documentazione.
Un mezzo di semplificazione utilizzabile, che permette comunque di ottenere gli elementi di controllo necessari alla corretta esecuzione di un piano di autocontrollo aziendale può essere ipotizzato nel fare assumere un ruolo centrale al registro delle non conformità, assumendo che tutto quanto non sia stato li riportato corrisponda a condizioni di conformità con quanto previsto nel manuale.

Le schede di verifica della sanificazione locali ed attrezzature, del comportamento igienico del personale, di accettazione materie prime, di qualifica dei fornitori e di processo, da compilarsi ad ogni ciclo di lavorazione vengono così ad assumere solo un ruolo di check list o promemoria in abbinamento ed a supporto di quanto indicato sul manuale e non necessitano di essere compile, semplificando notevolmente il lavoro compilativo in quanto si presume che le non conformità rappresentino le eccezioni nel processo produttivo aziendale e siano pertanto estremamente poco frequenti. In caso contrario si imporrebrà una verifica e revisione del sistema.

E’ chiaro che per dimostrarsi corretta questa semplificazione richiede che gli operatori addetti al controllo delle fasi che richiedono documentazione e che abbiano ricevuto idonea formazione siano in genere sempre gli stessi. In caso contrario si impone la compilazione e la firma delle schede.

L’addetto deputato ai controlli sarà indicato di volta in volta dal gruppo HACCP e la nomina andrà indicata sul registro delle non conformità. Qualora i controlli siano effettuati da addetti diversi da quello nominato si riporterà sul registro la indicazione dell’addetto utilizzato. L’effettuazione delle verifiche e l’autore possono essere riportati nell’agenda abbinata al registro delle non conformità, riportando sullo stesso gli esiti non conformi.
Da compilare ad ogni ciclo di lavorazione permarrebbe quindi solo la scheda di monitoraggio dei CCP.

Nelle imprese non strutturate, in cui cioè il conduttore dello stabilimento esegue direttamente oè in grado di esercitare un controllo diretto sulle procedure di produzione, delegando ad altri le sole azioni manuali, e nelle imprese che effettuano esclusivamente la vendita diretta al consumatore finale, in cui inoltre vengono a mancare le fasi di commercializzazione del prodotto ed i tempi di stoccaggio sono necessariamente limitati, si creano le condizioni per definire che anche le procure di controllo dei CCP siano da ritenersi come GMP che non necessitano pertanto di documentazione con la scheda di monitoraggio dei CCP, ma solo di descrizione esauriente nel manuale aziendale delle procedure di controllo eventualmente da mantenere in evidenza a titolo di promemoria nei punti della linea di produzione in cui si deve esercitare il controllo.

La condizione citata è la più comune soprattutto nelle aziende artigianali più piccole e pertanto può trovare proprio in queste aziende la più vasta applicazione.

Caratteristiche delle procedure
Sono state individuate all’interno del processo di fabbricazione dei prodotti della gelateria artigianale alcune fondamentali procedure.
Per procedura si intende una serie di azioni definite atte a raggiungere un determinato obbiettivo; una procedura descrive com’è organizzata un’attività, ne definiscono le responsabilità di gestione, gli obbiettivi e le modalità operative.
La tabella successiva riporta, nella colonna a sinistra, la struttura con la quale può essere scritta una procedura, elencando i paragrafi e i loro contenuti, e a destra un esempio di procedura di pulizia del mantecatore. Questo esempio può essere adattato con le dovute precisazioni a tutti gli ambiti compresi nelle procedure individuate nel processo produttivo.
E’ evidente che l’estensione ed il grado di dettaglio della procedura stessa dipenderà dalla complessità e dal numero delle operazioni considerate.

<table>
<thead>
<tr>
<th>Struttura e contenuti di una procedura</th>
<th>Procedura di pulizia del mantecatore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scopo</td>
<td>Scopo</td>
</tr>
<tr>
<td>Definire a che cosa servono le attività e le responsabilità descritte.</td>
<td>La presente procedura definisce le attività e le responsabilità per garantire una corretta pulizia e sanificazione di un mantecatore.</td>
</tr>
<tr>
<td>Campo di applicazione</td>
<td>Campo di applicazione</td>
</tr>
<tr>
<td>Indicare a chi si applicano le attività e le responsabilità descritte.</td>
<td>La presente procedura si applica alle attività di pulizia e sanificazione di un mantecatore orizzontale automatico.</td>
</tr>
<tr>
<td>Documenti di riferimento</td>
<td>Documenti di riferimento</td>
</tr>
</tbody>
</table>
| Elencare i documenti a cui fare riferimento per la definizione delle attività. | • Manuale d’uso del mantecatore
• D.L. del 26/05/1997, n. 155, capitolo V dell’allegato sui requisiti per l’apparecchiatura |
| **Modalità operative** | **Modalità operative** |
| Descrizione in sequenza di tutte le attività e delle responsabilità annesse necessarie allo scopo della procedura. | • Prima del lavoro l’utilizzatore deve effettuare un controllo visivo per verificare le condizioni igieniche del cilindro di gelatura, delle guarnizioni, dell’agitatore e del portello. Nel caso di presenza di sporco evidente non iniziare il lavoro prima di aver rimosso i residui con il detergente e aver risciacquato con acqua potabile a +45°C/+50°C. E’ responsabilità dell’utilizzatore segnalare eventuali carenze delle precedenti attività di pulizia nella scheda del mantecatore. |
Struttura e contenuti di una procedura

- Effettuare immediatamente al termine del lavoro il programma di lavaggio automatico come da manuale d’uso.
- Ispezionare a fine ciclo di lavaggio le parti smontabili come il portello e l’agitatore, verificare lo stato delle guarnizioni, detergere e disinfettare mediante l’uso di prodotti indicati nel manuale.
- Compilare la scheda del mantecatore annotando qualsiasi problema riscontrato.
- Verificare eventualmente l’efficacia della procedura mediante l’analisi microbiologica delle superfici pulite a mezzo di tamponi.

Allegati

Inserire eventuali schede per le attività di registrazione dei dati acquisiti e i calendari con le scadenze.

Procedura di pulizia del mantecatore

<table>
<thead>
<tr>
<th>Allegati</th>
<th>MOD mantecatore orizzontale automatico.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calendario pulizie settimanali.</td>
</tr>
<tr>
<td></td>
<td>Risultati delle verifiche analitiche.</td>
</tr>
</tbody>
</table>

L’esempio riportato è semplificato dal fatto che l’impianto ha la possibilità di effettuare il lavaggio in automatico. Potrebbe essere necessario comunque verificare l’efficacia della pulizia mediante una qualifica periodica, attraverso il prelievo di campioni delle superfici e delle soluzioni impiegate.

Il riferimento da seguire sarà dunque il piano di campionamento; nella tabella seguente si riportano alcune determinazioni da eseguire a titolo di esempio.

Il dettaglio e le modalità del campionamento devono essere in sintonia con i principi della prevenzione dei pericoli che enfatizzano le azioni in grado di correggere in tempo reale il processo e lasciano il compito di verifica al controllo analitico.

Si devono considerare, inoltre, le risorse a disposizione del singolo laboratorio di gelateria per le spese inerenti a queste analisi.

Piano di campionamento mantecatore orizzontale automatico XXX

<table>
<thead>
<tr>
<th>Prelievo</th>
<th>Listeria monocytogenes</th>
<th>Salmonella spp</th>
<th>Staphylococcus aureus</th>
<th>Teneo di germi</th>
<th>Escherichia coli</th>
<th>Muf</th>
<th>Altri</th>
</tr>
</thead>
</table>

84
E’ evidente che la complessità di sviluppo di una procedura dipende dall’ambito individuato: ad esempio la procedura di manutenzione può essere relativa a tutti gli impianti utilizzati nel laboratorio di gelateria artigianale. In questo caso le modalità operative saranno di carattere generale specificando eventualmente a parte le azioni, le responsabilità e le registrazioni per i singoli macchinari.

Caratteristiche delle istruzioni

Descrivono come fare un’operazione e devono essere disponibili nel luogo dove si svolge l’operazione in oggetto. Devono essere semplici ed eventualmente possono indicare quali sono gli errori da evitare nel compiere tale operazione.

Esempio di istruzione per la misura della temperatura del pastorizzatore (bassa e media pastorizzazione).

1. Attivare il ciclo di pastorizzazione della miscela.
2. All’inizio della pastorizzazione bloccare per qualche secondo l’agitatore.
3. Misurare la temperatura cercando di rilevarla all’interno della miscela mediante l’apposito termometro ad alcol.
4. Ripetere l’operazione prima della fine del ciclo.
5. Registrare sul modulo la media delle due misure.
N.B. Evitare di misurare la temperatura in prossimità delle pareti del cilindro.

Caratteristiche dei moduli di registrazione

Sono delle schede che aiutano gli operatori a registrare i dati del monitoraggio. Solitamente sono codificati e possono riportare anche le istruzioni per evitare errori di misurazione o valutazione nell’attività di monitoraggio, ed inoltre può essere utile inserire i valori dei limiti critici di riferimento.

Si riporta un esempio di un modulo di registrazione.

<table>
<thead>
<tr>
<th>MOD PAST 01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Limite critico: 72°C = C, 68°C = NC
Normativa di riferimento

- D.M. 31 marzo 1965 Disciplina degli additivi chimici consentiti nella preparazione e per la conservazione delle sostanze alimentari e successivi aggiornamenti.
- D.P.R. 14 gennaio 1997, n. 54 - Regolamento recante attuazione delle direttive 92/46 e 92/47 in materia di produzione e immissione sul mercato di latte e di prodotti a base di latte.
Esempi di procedure HACCP

Sono stati individuate tre tipologie di prodotti da sottoporre ad una analisi approfondita per una migliore comprensione dell’applicabilità di questo manuale: il gelato al latte, il sorbetto di frutta e il semifreddo.

Sono evidenziate le attività di un programma di gestione della gelateria artigianale basato sui principi del metodo HACCP.

Vengono tralasciate le parti già descritte nella parte generale sulla descrizione dei prodotti e il metodo di individuazione dei punti critici di controllo.

In particolare sono evidenziati la struttura e i contenuti dei documenti necessari a dare applicazione al metodo, mentre per i moduli di registrazione si riportano gli esempi di quelli indicati negli schemi n. 1, rimandando agli esempi nel capitolo del monitoraggio per le altre tipologie.

- Diagramma di flusso

 Nel diagramma di flusso sono evidenziate le tappe principali del processo di produzione. E’ necessario riconoscere in ognuna di queste tappe le singole operazioni svolte e i pericoli associati.

- Piano HACCP

 Il piano HACCP comprende la descrizione della tappa espansa alla descrizione delle operazioni, l’elenco dei pericoli e delle possibili cause, le azioni di controllo relative, la definizione dei CCP, i limiti critici legati alle azioni di controllo che diverranno l’oggetto del monitoraggio, le modalità del monitoraggio con i parametri individuati e i riferimenti di registrazione, le verifiche e le azioni corrective da intraprendere per riportare la situazione sotto controllo.

 Le tappe sono correlate ai possibili pericoli, individuati con i mezzi illustrati nel capitolo ? mentre il riconoscimento dei CCP è stato possibile mediante l’albero delle decisioni, esemplificato al capitolo ?.

 In ogni caso anche se l’esempio riguarda un determinato tipo di prodotto l’elaborazione del piano HACCP dovrà considerare:
 - la tecnologia di produzione,
 - la tipologia della gelateria,
 - la tipologia degli impianti utilizzati,
 - le modalità di conservazione delle materie prime,
 - le modalità di vendita,
 - la definizione delle procedure di pulizia, manutenzione e di igiene del personale in base ai mezzi e alle modalità prescritte.
Produzione del gelato a base di latte

Materie prime
Si suppone di preparare un gelato a base di latte mediante l’utilizzo di zuccheri, latte in polvere magro, cacao in polvere, tuorlo d’uovo fresco, latte pastorizzato, panna e acqua. Gli ingredienti sono conservati a seconda delle loro esigenze di temperatura in un magazzino fresco, al riparo dalla luce e in un frigorifero a +4 °C. Sono considerati come ingredienti anche l’aria inglobata naturalmente nel processo di mantecatura, le cialde e i coni distribuiti alla vendita e la panna montata per la preparazione di coppe decorate da consumarsi ai tavoli.

Procedure di fabbricazione
La produzione del gelato a base di latte è schematicizzata nel diagramma di flusso. Le procedure di pulizia e manutenzione e il rispetto della procedura di igiene del personale (GMP) sono considerate applicate in ogni punto del processo di fabbricazione. Sono evidenziati gli ambienti e gli impianti che vengono a contatto con il prodotto durante il ciclo di lavorazione, al fine di individuare facilmente le parti soggette ad una accurata pulizia e sanificazione.

Prodotti finiti e loro utilizzo
Il prodotto finito è il gelato venduto sul cono al banco vendita. I consumatori del prodotto appartengono a tutte le fasce di età, compresi i bambini, per cui si dovrà fare attenzione alle categorie maggiormente sensibili a possibili intossicazioni causate dalle tossine prodotte da stafilococchi e muffe, e infezioni da Salmonella, dato l’impiego del tuorlo d’uovo fresco e del cioccolato. In questo esempio non si considera la vendita del prodotto a ristoranti e mense in aggiunta alla vendita al dettaglio.

La sintesi delle attività per l'applicazione della metodologia HACCP è riassunta nel piano per l'HACCP. In questa produzione è stato riconosciuto come unico CCP la fase di pastorizzazione della miscela. La sorveglianza e controllo del CCP porta alla compilazione e registrazione di un modulo dove si annotano le temperature di pastorizzazione rilevate a frequenze stabilite, indipendentemente dall'indicazione dello strumento. La corrispondenza tra la misura di temperatura dell'impianto e quella misurata manualmente conferisce la conformità e la corretta gestione del CCP. In ogni caso ogni realtà dovrà adattare alle proprie esigenze anche i contenuti e le caratteristiche dei moduli utilizzati per l’attività di monitoraggio.
Si devono comunque definire le modalità di pulizia e le corrette prassi igieniche (GMP) per ogni fase della lavorazione svolta, come illustrato nella parte generale di questo manuale. Non deve essere dimenticata l'opportunità di collaborazione con l'organo di controllo ufficiale al fine di prevenire e migliorare le prestazioni del piano HACCP.

Simbologia utilizzata negli schemi sull'attività di autocontrollo:

Controllo visivo o controllo di un parametro misurabile oggetto del monitoraggio (temperatura, pH, la buona riuscita della preparazione, ecc.)

Definire e quindi scrivere le modalità di svolgimento delle operazioni di pulizia, di manutenzione di attrezzature ed impianti e in sintesi le norme di buona prassi di fabbricazione (GMP) applicabili alla produzione. In genere la scrittura di una di queste procedure non si riferisce ad una singola tappa del processo ma a più o tutte le operazioni svolte.

Verifiche analitiche su prodotti finiti, intermedi e materie prime da effettuarsi con frequenze e modalità di campionamento stabilite

Moduli per la registrazione ed archiviazione dei dati del monitoraggio. E’ utile attribuire a ciascun documento prodotto un codice di identificazione. Solitamente il modulo di registrazione delle Non Conformità viene applicato a più tappe del processo produttivo e quindi non fa riferimento specifico ad una operazione svolta.

Archivio di dati delle verifiche analitiche, dei curriculum del personale da conservare per dimostrare l’esistenza dell’autocontrollo igienico.
<table>
<thead>
<tr>
<th>Tappa</th>
<th>Pericoli e possibili cause</th>
<th>Azioni di controllo</th>
<th>CC P</th>
<th>Limiti critici</th>
<th>Monitoraggio</th>
<th>Verifiche</th>
<th>Azioni correttive</th>
<th>Registrazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ricevimento materie prime</td>
<td>Contaminazioni microbiche dell’acqua</td>
<td>Applicazione delle specifiche dell’acqua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infestanti per rottura confezioni dei prodotti in polvere</td>
<td>Controllo integrità delle confezioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salmonella per pulizia inadeguata delle uova fresche</td>
<td>Corretta pulizia, trasporto e conservazione delle uova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coliformi nel latte pastorizzato per trattamento termico inefficiente, rottura confezioni e temperatura</td>
<td>Controllo integrità confezioni, temperatura trasporto (D.P.R.54 ≤ 6°C), data di</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tappa</td>
<td>Pericoli e possibili cause</td>
<td>Azioni di controllo</td>
<td>CC P</td>
<td>Limiti critici</td>
<td>Monitoraggio</td>
<td>Verifiche</td>
<td>Azioni correttive</td>
<td>Registrazioni</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>trasporto inadeguata (>6°C)</td>
<td>scadenza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muffe nei coni per rottura confezioni e condizioni di trasporto inadeguate</td>
<td>Controllo integrità delle confezioni e delle condizioni di trasporto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservazione</td>
<td>Latte in polvere, zuccheri, cioccolato, coni e cialde</td>
<td>Moltiplicazione microbica e alterazione organolettica per temperature inadeguate, contaminazione ambientale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applicazione dei parametri di temperatura adeguata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applicazione corretta procedura di pulizia del magazzino</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tappa</td>
<td>Pericoli e possibili cause</td>
<td>Azioni di controllo</td>
<td>CC P</td>
<td>Limiti critici</td>
<td>Monitoraggio</td>
<td>Verifiche</td>
<td>Azioni correttive</td>
<td>Registrazioni</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Procedura</td>
<td>Frequenza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>uova, latte pastizato</td>
<td>Moltiplicazione microbica, anche di microrganismi patogeni, per temperature inadeguate, contaminazione ambientale</td>
<td>Rispetto delle temperature del frigorifero</td>
<td>Applicazione corrette procedura di manutenzione del frigorifero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosaggio</td>
<td>Contaminazione microbica dal personale</td>
<td>Applicazione corrette procedura di igiene del personale (GMP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tappa</td>
<td>Pericoli e possibili cause</td>
<td>Azioni di controllo</td>
<td>CC P</td>
<td>Limiti critici</td>
<td>Monitoraggio</td>
<td>Verifiche</td>
<td>Azioni correttive</td>
<td>Registrazioni</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>------</td>
<td>---</td>
<td>--</td>
<td>---------------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>Miscelazione e Pastorizzazione</td>
<td>Contaminazione microbica dall’ambiente Contaminazione da residui di detergenti</td>
<td>Applicazione procedura di pulizia</td>
<td>CC P n. 1</td>
<td>Rispetto procedura pulizia</td>
<td>Controllo visivo dello stato di pulizia</td>
<td>Giornaliera</td>
<td>Analisi Coliformi sulla miscela pastorizzata Taratura termometri</td>
<td>MOD NC</td>
</tr>
<tr>
<td></td>
<td>Temperatura inadeguata Tempi inadeguati Raffreddamento lento</td>
<td>Applicazione procedura di manutenzione del pastorizzatore e Corretta applicazione parametri tecnologici Taratura termometri</td>
<td></td>
<td>Rispetto procedura manutenzione pastorizzatore 82°C x 5” = conforme <82°C = non conforme < 5” = non conforme Raffr. a 4°C in più di 1 ora = non conforme</td>
<td></td>
<td></td>
<td>Modifica della procedura manutenzione Modifica dei parametri tecnologici (tempi e temperature) Taratura termometri</td>
<td></td>
</tr>
</tbody>
</table>

94
<table>
<thead>
<tr>
<th>Tappa</th>
<th>Pericoli e possibili cause</th>
<th>Azioni di controllo</th>
<th>CC P</th>
<th>Limiti critici</th>
<th>Monitoraggio</th>
<th>Verifiche</th>
<th>Azioni correttive</th>
<th>Registrazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturazione</td>
<td>Moltiplicazione microbica dovuta ad un innalzamento della temperatura</td>
<td>Applicazione procedura di manutenzione e pulizia del maturatore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contaminazione microbica dal maturatore sporco</td>
<td>Corretta applicazione parametri tecnologici</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantecazione e Trasferimento nella sorbettiera</td>
<td>Contaminazione microbica dal mantecatore e dalla sorbettiera</td>
<td>Applicazione procedura di pulizia e igiene del personale (GMP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contaminazione microbica dal personale all’estrazione</td>
<td>Applicazione procedura di pulizia dei locali</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contaminazione ambientale da muffe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tappa</td>
<td>Pericoli e possibili cause</td>
<td>Azioni di controllo</td>
<td>CC P</td>
<td>Limiti critici</td>
<td>Monitoraggio</td>
<td>Verifiche</td>
<td>Azioni correttive</td>
<td>Registrazioni</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---------------------</td>
<td>------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Indurimento</td>
<td>Contaminazione e moltiplicazione microbica per temperature eccessive</td>
<td>Applicazione procedura di manutenzione e pulizia dell’abbattitore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservazione prodotti finiti</td>
<td>Contaminazione e moltiplicazione microbica per temperature eccessive dei frigoriferi</td>
<td>Corretta applicazione parametri tecnologici Applicazione procedura di manutenzione e pulizia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tappa</td>
<td>Pericoli e possibili cause</td>
<td>Azioni di controllo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendita</td>
<td>Contaminazione microbica dai porzionatori Contaminazione microbica dalla panna Contaminazione microbica dal personale</td>
<td>Applicazione procedura di pulizia e manutenzione di utensili, frigoriferi e montapanna Controllo al ricevimento delle confezioni della panna Applicazione procedura di igiene del personale (GMP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitoraggio</th>
<th>Verifiche</th>
<th>Azioni correttive</th>
<th>Registrazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedura</td>
<td>Frequenza</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCHEMA N. 1

Autocontrollo nella produzione del gelato a base di latte

Ricevimento materie prime

Conservazione materie prime

Dosaggio

Miscelazione e Pastorizzazione

Maturazione

Mantecazione

Indurimento e Conservazione

Distribuzione e vendita

Registrazioni

Verifiche e Documenti

MP

Analisi potabilità acqua

Coliformi sulle miscele pastorizzate

Controllo termometri e stato usura

Analisi a campione dei prodotti finiti per i parametri di legge

Procedura di pulizia di impianti e strutture

GMP
<table>
<thead>
<tr>
<th>Data</th>
<th>Prodotto</th>
<th>Quantità</th>
<th>Lotto</th>
<th>Controlli al ricevimento</th>
<th>Data scadenza</th>
<th>Temperatura trasporto</th>
<th>Integrità confezioni</th>
<th>Accettato/Rifiutato</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
MOD NC

<table>
<thead>
<tr>
<th>Data</th>
<th>Prodotto/Impianto (codice, data scadenza,...)</th>
<th>Non Conformità</th>
<th>Azione Correttiva</th>
<th>Responsabilità (firma)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>Lavorazione</td>
<td>Temperatura pastorizzatore</td>
<td>Temperatura misurata</td>
<td>Azioni correttive, taratura, richiesta intervento assistenza, ...</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Produzione del sorbetto di frutta

Il sorbetto può essere considerato come il gelato tipico che i gelatieri artigiani producevano una volta. Nella formulazione originaria i sorbetti erano composti da acqua, zuccheri, polpe e/o succhi di frutta, da cui si deduce che i solidi sono rappresentati dagli zuccheri. Sono quindi questi ultimi che vanno bilanciati attentamente, considerando sia quelli contenuti nello sciroppo base, sia quelli apportati dai succhi o polpe di frutta. Il contenuto zuccherino della frutta presenta spesso notevoli variazioni (tipo di frutto, zona di provenienza, grado di maturazione, cultivar, ecc.) per cui è necessario, per ottenere un bilanciamento corretto, avvalersi di uno strumento adatto che possa indicare con precisione la percentuale totale degli zuccheri.

I sorbetti si possono ripartire in tre gruppi a seconda del tipo di frutta impiegata: sorbetti alla frutta agra, sorbetti alla frutta dolce e sorbetti al vino o liquori.

Il bilanciamento di una miscela per sorbetti non è sempre facile, per i motivi che abbiamo indicato più sopra, e riguarda i singoli ingredienti.

Zuccheri

In linea di massima il contenuto degli zuccheri dovrebbe oscillare entro i 17°-18° Bé (31-33 °Brix) per sorbetti alla frutta (agra o dolce).

Oltre al saccarosio è consigliabile usare sciroppo di glucosio per ridurre, per quanto possibile, la dolcezza del prodotto. Il contenuto dello sciroppo di glucosio non dovrebbe superare il 15% del totale degli zuccheri sulla sostanza secca. Non è consigliabile usare destrosio o zucchero invertito, poiché questi abbassano notevolmente il punto di congelamento e richiedono quindi anche temperature più basse per la conservazione e la vendita.

Succhi e polpe di frutta

È superfluo ricordare che per ottenere un sorbetto di qualità è necessario utilizzare la frutta fresca e della migliore qualità. La percentuale dei succhi e/o polpe di frutta può oscillare notevolmente in relazione alla qualità del prodotto che si desidera ottenere. Una maggiore quantità di succo o polpa conferisce un sorbetto più gustoso e pregiato. Si possono avere buoni risultati anche adoperando succhi concentrati, frutta liofilizzata o surgelata. L’uso di paste di frutta è consigliabile a condizione di conoscere con precisione la percentuale ed i tipi di zuccheri in essa contenuti. Una combinazione di queste con frutta fresca è spesso determinante al fine di ottenere una standardizzazione della produzione.

Acidificanti

Il grado diacidità di una miscela per sorbetti va controllato di volta in volta. È chiaro che non è possibile quantificare la percentuale di succo di limone o di acido citrico da aggiungere essendo il pH di ogni frutto diverso e dipendente da numerosi fattori. L’aggiunta dell’acido va effettuata immediatamente prima della mantecazione, onde evitare la destabilizzazione della miscela.
Addensanti
Conferiscono al prodotto finito una maggiore stabilità, permettono un limitato incorporamento di aria e di conseguenza un tempo di scongelamento meno rapido. È indispensabile adottare adeguati tempi di maturazione affinché possano idratarsi e svolgere in pieno la loro azione.
La quantità di impiego viene solitamente suggerita dalle ditte fornitrici e si aggira su valori che vanno dallo 0.3 allo 0.5 %.

Preparazione delle miscele
La preparazione delle miscele può essere effettuata in due modi.
1. Preparazione di uno sciroppo base con addensanti e gelificanti, successiva pastorizzazione e conservazione in recipienti ben chiusi in frigorifero a temperatura positiva. Contenendo degli stabilizzanti devono essere consumati nell’arco di 5 o 6 giorni.
2. Composizione della miscela con acqua, zuccheri, polpe e/o succhi di frutta e addensanti. Tale miscela, dopo opportuna maturazione, dovrà essere acidificata e successivamente mantecata.

I sorbetti di frutta sono caratterizzati, in genere, da valori di pH che contrastano la contaminazione e la moltiplicazione microbica, cioè possiedono una maggior protezione rispetto i gelati a base di latte.
I moduli per la registrazione dell’attività del monitoraggio sono i medesimi dell’esempio precedente.
Piano HACCP per il sorbetto di frutta

<table>
<thead>
<tr>
<th>Tappa</th>
<th>Pericoli e possibili cause</th>
<th>Azioni di controllo</th>
<th>CC P</th>
<th>Limiti critici</th>
<th>Monitoraggio</th>
<th>Verifiche</th>
<th>Azioni correttive</th>
<th>Registr azioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ricevimento materie prime</td>
<td>Frutta marcia (muffe, lieviti, monilia, ecc.) Frutta trasportata in condizioni non idonee Infestanti e muffe per rottura confezioni di coni e cialde e degli ingredienti in polvere</td>
<td>Controllo al ricevimento delle materie prime (caratteristiche organolettiche, delle confezioni, delle condizioni di trasporto) Scelta dei fornitori</td>
<td>CC P n. 1</td>
<td>Presenza anomalie evidenti delle caratteristiche organolettiche Confezioni integre Adequate condizioni di trasporto</td>
<td>Controllo visivo delle caratteristiche organolettiche, delle confezioni e delle condizioni di trasporto</td>
<td>Per tutti i prodotti</td>
<td>Eventuale analisi dell’acqua</td>
<td>Rifiuto dei prodotti e segnalazione ai fornitori</td>
</tr>
<tr>
<td>Stoccaggio materie prime</td>
<td>Moltiplicazione microbica e alterazione organolettica per temperature ed umidità</td>
<td>Rispetto delle temperature dei locali di conservazione</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: MOD RIC sono le sigle per Metodo Operativo di Risoluzione dei Conflitti.
<table>
<thead>
<tr>
<th>Tappa</th>
<th>Pericoli e possibili cause</th>
<th>Azioni di controllo</th>
<th>CC P</th>
<th>Limiti critici</th>
<th>Monitoraggio</th>
<th>Verifiche</th>
<th>Azioni correttive</th>
<th>Registrazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosaggio</td>
<td>inadequate, contaminazione ambientale e dai contenitori</td>
<td>Applicazione procedure pulizia e manutenzione</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pastorizzazione sciropo</td>
<td>Contaminazione microbica dal personale</td>
<td>Applicazione procedura igiene del personale (GMP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contaminazione microbica dagli impianti ed attrezzature</td>
<td>Temperature raggiunte per ottenere lo sciropo</td>
<td>CC P n. 2</td>
<td>Temperature sufficienti ad eliminare microrganismi patogeni</td>
<td>Controllo visivo dell’ottenimento del sciropo</td>
<td>Ad ogni lavorazione</td>
<td>Temperatura raggiunta</td>
<td>MOD NC</td>
</tr>
<tr>
<td>Conservazione sciropo</td>
<td>Contaminazione microbica dai contenitori</td>
<td>Applicazione procedura, rispetto tempi di utilizzo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscelazione</td>
<td>Contaminazione microbica dagli impianti ed</td>
<td>Applicazione procedure pulizia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tappa</td>
<td>Pericoli e possibili cause</td>
<td>Azioni di controllo</td>
<td>CC P</td>
<td>Limiti critici</td>
<td>Monitoraggio</td>
<td>Verifiche</td>
<td>Azioni correttive</td>
<td>Registrazioni</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---------------------</td>
<td>------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>attrezzature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantecazione e Trasferimento nella sorbettiera</td>
<td>Contaminazione microbica dal mantecatore e dalla sorbettiera Contaminazione microbica dal personale all’estrazione Contaminazione ambientale da muffe</td>
<td></td>
<td></td>
<td></td>
<td>Applicazione e procedura pulizia e igiene del personale (GMP) Applicazione e procedura pulizia dei locali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indurimento</td>
<td>Contaminazione e moltiplicazione microbica per temperature eccessive Contaminazione microbica dall’abbattitore</td>
<td></td>
<td></td>
<td></td>
<td>Applicazione e procedura manutenzione e pulizia dell’abbattitore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservazione prodotti finiti</td>
<td>Contaminazione e moltiplicazione microbica per temperature</td>
<td></td>
<td></td>
<td></td>
<td>Corretta applicazione parametri tecnologici</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tappa</td>
<td>Pericoli e possibili cause</td>
<td>Azioni di controllo</td>
<td>CC P</td>
<td>Limiti critici</td>
<td>Monitoraggio</td>
<td>Verifiche</td>
<td>Azioni correttive</td>
<td>Registrazioni</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>-----</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>eccessive dei frigoriferi</td>
<td>Applicazione e procedura manutenzione e pulizia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendita</td>
<td>Contaminazione microbica dai porzionatori</td>
<td>Applicazione e procedura pulizia, manutenzione e di utensili, frigoriferi e montapanna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contaminazione microbica dalla panna</td>
<td>Controllo al ricevimento delle confezioni della panna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contaminazione microbica dal personale</td>
<td>Applicazione e procedura igiene del personale (GMP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Autocontrollo nella produzione del sorbetto alla frutta

SCHEMA N. 1

Ricevimento materie prime
Conservazione materie prime
Dosaggio materie prime
Pastorizzazione sciroppo
Conservazione sciroppo
Miscelazione
Mantecazione
Indurimento e Conservazione
Distribuzione e vendita

Registrazioni

CCP 1 → Esito ricevimento MP

Verifiche e Documenti

Analisi potabilità acqua
Controllo ottenimento sciroppo
Analisi a campione dei prodotti finiti per i parametri di legge
Procedura di pulizia di impianti e strutture
GMP
Produzione del semifreddo all’italiana

La preparazione del semifreddo all’italiana consiste nell’unione di tre composti:
- crema pasticcera
- meringa all’italiana
- panna montata.
Questi prodotti sono amalgamati uniformemente conservando per quanto possibile la struttura di origine.
L’aromatizzazione per la predisposizione dei vari gusti può avvenire in due modi: direttamente durante l’allestimento della crema pasticcera, oppure nel corso dell’unione dei tre composti aggiungendo a freddo passate di frutta, liquori, frutta candita, pan di Spagna, granelle varie, ecc.

In un recipiente capiente si introduce la crema pasticcera, aggiungendo ed incorporandovi tutti quegli ingredienti di volta in volta destinati all’aromatizzazione (pasta nocciola, pasta gianduia, pasta caffè, frutta candita, liquori, ecc.). Si aggiunge poi nell’ordine la meringa all’italiana, miscelando con attenzione in modo da non farla smontare, e per ultima la panna montata, anch’essa incorporata delicatamente.
Con la massima tempestività si riempiono le forme preventivamente raffreddate ponendole successivamente a congelare.

Sulla composizione del semifreddo non esistono indicazioni precise, ma possiamo sintetizzare alcuni aspetti di tipo pratico:
- la quota di panna non dovrebbe essere inferiore al 50%. È infatti questo l’elemento primario che conferisce sofficità al prodotto finito;
- la meringa all’italiana non dovrebbe superare il limite del 20% considerando il fatto che non è apportatrice di elementi aromatici e che, rispetto alla panna, apporta una struttura meno pregiata;
- affinché la crema pasticcera possa assolvere il suo compito di apportatrice di “corpo” è bene sia presente quantitativamente attorno al 30%. Nei semifreddi di frutta la percentuale di crema si ridurrà al 25%;
- aggiunte di liquori non dovrebbero superare quantitativamente il 6% ed essere introdotte nella massa il più tardi possibile.

La produzione del semifreddo è caratterizzata, sotto il profilo igienico, dall’utilizzo di panna montata che non ha subito un processo di risanamento termico. La crema pasticcera e la meringa all’italiana, pur comprendendo nella preparazione un trattamento termico, devono essere conservate con la massima attenzione e utilizzate in breve tempo.
Nel piano per l’HACCP si ritengono importanti i controlli al ricevimento delle materie prime, della manipolazione dei prodotti intermedi e della conservazione dei semifreddi destinati alla vendita.
Il piano per l’HACCP in ogni caso prevede le informazioni necessarie per sviluppare e migliorare la metodologia qualora le risorse e le capacità del gelatiere artigiano lo permettano.
Piano HACCP per il semifreddo

<table>
<thead>
<tr>
<th>Tappa</th>
<th>Pericoli e possibili cause</th>
<th>Azioni di controllo CCP</th>
<th>Limiti critici</th>
<th>Monitoraggio</th>
<th>Verifiche</th>
<th>Azioni correttive</th>
<th>Registrazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Procedura</td>
<td>Frequentazione</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

110
<table>
<thead>
<tr>
<th>Tappa</th>
<th>Pericoli e possibili cause</th>
<th>Azioni di controllo</th>
<th>CCP</th>
<th>Limiti critici</th>
<th>Monitoraggio</th>
<th>Verifiche</th>
<th>Azioni correttive</th>
<th>Registrazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ricevimento materie prime</td>
<td>Contaminazioni microbiche dall’acqua Salmonella per pulizia inadeguata delle uova fresche Frutta marcia (muffe, lieviti, monilia, ecc.) Frutta trasportata in condizioni non idonee Coliformi nel latte pastorizzato per trattamento termico inefficace, rottura confezioni e temperatura trasporto inadeguata Infestanti e muffe per rottura confezioni di coni e cialde e degli ingredienti in polvere</td>
<td>Controllo al ricevimento delle materie prime (caratteristiche organolettiche, delle confezioni, delle condizioni di trasporto) Scelta dei fornitori</td>
<td>CCP n. 1</td>
<td>Presenza anomalie evidenti delle caratteristiche organolettiche Confezioni integre Adequate condizioni di trasporto</td>
<td>Controllo visivo delle caratteristiche organolettiche e, delle confezioni e delle condizioni di trasporto</td>
<td>Per tutti i prodotti</td>
<td>Eventuale analisi dell’acqua</td>
<td>Rifiuto dei prodotti e segnalazione ai fornitori</td>
</tr>
<tr>
<td>Ta ppa</td>
<td>Pericoli e possibili cause</td>
<td>Azioni di controllo</td>
<td>CCP</td>
<td>Limiti critici</td>
<td>Monitoraggio</td>
<td>Verifiche</td>
<td>Azioni correttive</td>
<td>Registrazioni</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Stoccag gio materie prime</td>
<td>Moltiplicazione microbica e alterazione organolettica per temperature ed umidità inadeguate, contaminazione ambientale e dai contenitori</td>
<td>Rispetto delle temperature dei locali di conservazione Applicazione procedura pulizia e manutenzione</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparazione semilavari (crema, meringa e panna)</td>
<td>Contaminazione microbica dall’ambiente, dal personale, dagli impianti ed attrezzature Contaminazione da residui di detergenti</td>
<td>Applicazione procedura pulizia delle attrezzature utilizzate e dell’igiene del personale (GMP)</td>
<td>CCP n. 2</td>
<td>Rispetto procedura pulizia delle attrezzature utilizzate e dell’igiene del personale</td>
<td>Controllo visivo dello stato di pulizia delle attrezzature utilizzate Controllo visivo sulla reale applicazione delle norme igieniche</td>
<td>Giornaliera</td>
<td>Tamponi delle superfici</td>
<td>Modifica della procedura di pulizia e dell’igiene del personale</td>
</tr>
<tr>
<td>Tappa</td>
<td>Pericoli e possibili cause</td>
<td>Azioni di controllo</td>
<td>CCP</td>
<td>Limiti critici</td>
<td>Monitoraggio</td>
<td>Verifiche</td>
<td>Azioni correttive</td>
<td>Registr azioni</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---</td>
<td>-----</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Miscelazione</td>
<td>Contaminazione microbica dagli impianti ed attrezzature</td>
<td>Applicazione procedura pulizia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congelamento</td>
<td>Nell’esempio considerato non si rilevano pericoli per questa tappa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservazione</td>
<td>Contaminazione e moltiplicazione microbica per temperature eccessive dei frigoriferi</td>
<td>Corretta applicazione parametri tecnologici Applicazione procedura manutenzione e pulizia</td>
<td>CCP n.3</td>
<td>(\leq -15^\circ C) = conforme (> -15^\circ C) = non conforme</td>
<td>Controllo visivo dello stato di pulizia e manutenzione dei frigoriferi</td>
<td>Giornaliera</td>
<td></td>
<td>MOD NC</td>
</tr>
<tr>
<td>Vendita</td>
<td>Contaminazione microbica dal personale</td>
<td>Applicazione procedura igiene del personale (GMP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCHEMA N. 1

Autocontrollo nella produzione del semifreddo

Registrazioni

Verifiche e Documenti

- **Ricevimento materie prime**
 - CCP 1: MOD Ricevimento MP
 - Analisi potabilità acqua

- **Conservazione materie prime**
 - CCP 2: MOD verifica applicazione GMP
 - Controllo pulizia utensili e superfici
 - Tamponi delle superfici

- **Preparazione e conservazione crema pasticcera, meringa all’italiana e panna montata**
 - CCP 3: Temperatura frigorifero
 - Analisi a campione dei prodotti finiti per i parametri di legge

- **Miscelazione**

- **Congelamento**

- **Conservazione**

- **Distribuzione e vendita**

Registrazioni

- **Verifiche e Documenti**

Controllo pulizia utensili e superfici

Tamponi delle superfici

Analisì a campione dei prodotti finiti per i parametri di legge

Procedura di pulizia di impianti e strutture

GMP

Procedura di pulizia di impianti e strutture

GMP
Allegato I

Questionario di autovalutazione della conformità del laboratorio di gelateria ai requisiti strutturali richiesti.

<table>
<thead>
<tr>
<th>Aspetto</th>
<th>Domanda</th>
<th>Valutazione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Insufficiente</td>
</tr>
<tr>
<td>Costruzione del fabbricato e zone circostanti</td>
<td>Area circostante esente da attrezzature maltenute, disordine, rifiuti, scarti ed erbacce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di rifugi adatti ai roditori</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raccordi e cavità tenuti chiusi contro roditori e uccelli</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di vie di accesso per roditori (travature, ecc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Giunzioni continue tra parti vecchie e nuove</td>
<td></td>
</tr>
<tr>
<td>Approvvigionamento idrico</td>
<td>Acqua calda a temperature adeguata (82° C se usata per disinfezione)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di connessioni tra tubazioni di acqua di diversa provenienza</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ghiaccio prodotto con acqua potabile</td>
<td></td>
</tr>
<tr>
<td>Eliminazione rifiuti e Scarichi</td>
<td>Contenitori di rifiuti chiusi, puliti, preferibilmente muniti di sacchi a perdere</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allontanamento rifiuti giornalieri</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scarichi muniti di sifoni</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scarichi puliti e sgombri</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drenaggio pavimenti non in connessione diretta con sistema fognario</td>
<td></td>
</tr>
<tr>
<td>Spogliatoi</td>
<td>Adeguati, separati dall'area di lavorazione, areati verso l'esterno</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presenza di cartelli per il lavaggio mani</td>
<td></td>
</tr>
<tr>
<td>Aspetto</td>
<td>Domanda</td>
<td>Valutazione</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insufficiente</td>
</tr>
<tr>
<td></td>
<td>Puliti ed ordinati</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di oggetti inutili</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dotati di idonei mezzi per lavaggio mani</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Armadietti doppi e divisi per ogni dipendente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Armadietti separati da pareti e pavimento o incorporati</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contenitore per indumenti sporchi</td>
<td></td>
</tr>
<tr>
<td>Servizi igienici</td>
<td>Cartello per il lavaggio mani</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porte chiuse e autochiudenti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In buono stato, puliti ed esenti da odori</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salviette di carta e contenitori per rifiuti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carta igienica sufficiente negli appositi contenitori</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Areati verso l'esterno con almeno 6 ricambi/ora</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponibilità di lavandini idonei</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non direttamente comunicanti con l'area di produzione</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimo 1 gabinetto ogni 10 persone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di gabinetti alla turca se non dotati di sistema autopulente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>efficace</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flusso d'acqua a comando non manuale</td>
<td></td>
</tr>
<tr>
<td>Ricevimento e</td>
<td>Mezzi di trasporto ispezionati igienicamente prima del carico e dello</td>
<td></td>
</tr>
<tr>
<td>spedizioni</td>
<td>scarico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prodotti ispezionati al ricevimento</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non ammesso trasporto di alimenti assieme a prodotti di scarto e/o</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pericolosi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area stoccaggio materie prime adeguata</td>
<td></td>
</tr>
<tr>
<td>Aspetto</td>
<td>Domanda</td>
<td>Valutazione</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insufficienti</td>
</tr>
<tr>
<td>Magazzinaggio</td>
<td>Prodotti puliti ed in buono stato, protetti da polvere, umidità, ratti, uccelli, insetti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di segni di infestazioni</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura e umidità idonee ai materiali conservati</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Termometri e igrometri controllati periodicamente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Merci conservate non oltre il tempo stabilito</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di vecchi macchinari o materiali inutili assieme ai prodotti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corretta rotazione dei lotti</td>
<td></td>
</tr>
<tr>
<td>Pareti</td>
<td>Pulite e prive di residui aderenti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In buone condizioni. Senza desquamazioni, crepe o fori</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chiare, lisce e lavabili a livello di eventuali schizzi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angoli arrotondati tra le pareti e il pavimento</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Punti vulnerabili protetti da paraurti</td>
<td></td>
</tr>
<tr>
<td>Soffitti</td>
<td>Puliti e privi di desquamazioni e residui</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di maffe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lisci, senza sporgenze, travi, tubi, ecc. che possono albergare sporcizia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nessun trasudamento o gocciolamento anche in corrispondenza di tubi o condotte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lucernari e lampade, sopra l’area produttiva, di sicurezza e protetti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di meccanismi o tubazioni sul flusso del prodotto</td>
<td></td>
</tr>
<tr>
<td>Pavimenti e scarichi</td>
<td>Antisdrucciolevoli e resistenti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lisci e facilmente pulibili</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adeguate pendenza verso gli scarichi</td>
<td></td>
</tr>
<tr>
<td>Aspetto</td>
<td>Domanda</td>
<td>Valutazione</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insufficiente</td>
</tr>
<tr>
<td>Giunture pavimenti pareti impermeabili</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puliti, privi di residui e di acqua stagnante</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulizie eseguite senza provocare polvere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scarichi con coperchio ermetico a sifone in buono stato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assenza condutture fognarie nell'area di processo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finestre</td>
<td>A filo parete interna</td>
<td></td>
</tr>
<tr>
<td>Davanzali con pendenza (circa 45°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davanzali puliti e liberi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pannelli e infissi puliti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reti antiinsetto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porte</td>
<td>Con buona tenuta; fessura al pavimento: inferiore a 6 mm</td>
<td></td>
</tr>
<tr>
<td>Porte esterne a prova di roditori</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autochiudenti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulite, in buono stato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantenute chiuse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impianti elettrici</td>
<td>Entrate di fili e cavi sigillate</td>
<td></td>
</tr>
<tr>
<td>Prese, quadri e canalette con chiusure ermetiche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assenza di accumuli di polvere nei e sui quadri elettrici, canalette, ecc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assenza di canalette, quadri elettrici, ecc. non utilizzati</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nessun segno di insetti o roditori nei quadri elettrici</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illuminazione, aerazione e condizioni ambientali</td>
<td>Plafoniere di sicurezza o protette nell'area produttiva</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Illuminazione adeguata</td>
<td></td>
</tr>
<tr>
<td>Aspetto</td>
<td>Domanda</td>
<td>Valutazione</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Soddisfacente estrazione dei fumi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura ed umidità adeguate per condizioni confortevoli</td>
<td></td>
</tr>
<tr>
<td>Mezzi per il lavaggio delle Mani</td>
<td>Lavelli disponibili presso ogni zona di lavoro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rubinetteria idonea possibilmente non a mano</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acqua a temperatura adeguata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponibilità di sapone liquido</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contenitore per rifiuti presso ogni lavello</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponibilità di salviette monouso</td>
<td></td>
</tr>
<tr>
<td>Stipetti-scaffali</td>
<td>Distanziati di 15 cm o incorporati al pavimento e alle pareti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Puliti, ordinati ed in buono stato</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di oggetti inutili</td>
<td></td>
</tr>
<tr>
<td>Macchinari e impianti (costruzione e manutenzione)</td>
<td>Costruiti con materiali lisci, non porosi e non corrodibili dai lavaggi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superfici a contatto con l'alimento, lisce e di materiali approvati</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guarnizioni e tappi in materiali approvati</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sopraelevati per consentire accesso e pulizia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In buono stato, senza crepe, rotture, corrosioni in cui il prodotto possa insinuarsi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di perdite di prodotto</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Macchinari ed impianti facili da pulire ed ispezionare per costruzione e collocamento</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parti trasparenti infrangibili</td>
<td></td>
</tr>
<tr>
<td>Aspetto</td>
<td>Domanda</td>
<td>Valutazione</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Macchine accessibili da tutti i lati e sollevate da terra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impianto facilmente smontabile ed ispezionabile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attrezzature e prodotti per le pulizie adeguati ed approvati, se necessario, correttamente mantenuti ed impiegati</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superfici a contatto con il prodotto, pulite alla vista e al tatto e disinfettate se necessario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altre superfici tenute pulite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utensili puliti, disinfettati, correttamente conservati ed asciugati</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detergenti e sanificanti ben risciacquati</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acqua di lavaggio, risciacquo e sanificazione potabile e a temperatura adeguata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manuali di cleaning disponibili</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macchine pulite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambiente ordinato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficacia di detersione e disinfezione verificata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assenza di attrezzature vecchie, macchinari, tubi e canalette non utilizzati</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assenza di disordine, rifiuti e scarti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulizia del laboratorio giornaliera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimizzare la dispersione degli oggetti, prevedendo mezzi e luoghi di conservazione</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspetto</td>
<td>Domanda</td>
<td>Valutazione</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insufficient</td>
</tr>
<tr>
<td>Controllo degli insetti</td>
<td>Assenza di insetti volanti (mosche, zanzare, tignole, ecc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di scarafaggi in fratture sui muri, pavimenti, soffitti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di scarafaggi dietro e dentro a quadri elettrici, armadietti, ecc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di scarafaggi dentro elementi isolanti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di scarafaggi in crepe, in oggetti di legno, porte, ecc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di scarafaggi negli scarichi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di scarafaggi nelle aree umide e nascoste del pavimento</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di seta da larve di lepidottero</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di insetti nelle attrezzature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di insetti striscianti nei contenitori, nei sacchi, nelle cuciture e pieghe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di piste sulle superfici polverose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di ragnatele</td>
<td></td>
</tr>
<tr>
<td>Controllo dei roditori</td>
<td>Assenza di topi o ratti visibili</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di rosicchiature su scatole, ecc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di escreimenti di roditore negli angoli, tra i sacchi, ecc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Controllo dei roditori con procedure e mezzi autorizzati e regolarmente monitorizzati</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cinture preventive di esche avvelenate attorno al laboratorio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di impronte di roditori su superfici polverose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di macchie o spruzzi causati da ratti contro le pareti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di esche sfuse o disperse nell'ambiente</td>
<td></td>
</tr>
<tr>
<td>Aspetto</td>
<td>Domanda</td>
<td>Valutazione</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Controllo degli uccelli</td>
<td>Assenza di uccelli</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di escrementi e piume su pavimenti, sacchi, ecc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di nidi su davanzali, strutture, ecc.</td>
<td></td>
</tr>
<tr>
<td>Protezione del prodotto</td>
<td>Prodotto difeso dalle contaminazioni e protetto da polveri in ogni fase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prese d’aria per il raffreddamento, asciugamento, trasporto del prodotto</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lontano da zone contaminate e provviste di adeguati filtri</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prodotti congelati o refrigerati, mantenuti alle corrette temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prodotti microbiologicamente alterabili, mantenuti sotto i 5°C o sopra i</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confezioni rigide conservate capovolte e pulite prima del riempimento</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prodotti chimici pericolosi tenuti sotto chiave ed etichettati</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contenitori vuoti conservati opportunamente lontano dal pavimento e in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>zone pulite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impiego di soli pesticidi approvati e nelle condizioni prescrritte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulizia sacchi e contenitori materie prime e ingredienti prima dello</td>
<td></td>
</tr>
<tr>
<td></td>
<td>svuotamento</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di esche sfuse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protezione del prodotto dalle operazioni di manutenzione</td>
<td></td>
</tr>
<tr>
<td>Norme sanitarie</td>
<td>Salute del personale controllata regolarmente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Persone con esantemi, ferite infette, infezioni respiratorie, o altre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>malattie trasmissibili non ammesse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malattie trasmissibili note o sospette comunicate alle autorità sanitarie</td>
<td></td>
</tr>
<tr>
<td>Aspetto</td>
<td>Domanda</td>
<td>Valutazione</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Abbigliamento idoneo e pulito, comprese cuffie di contenimento capelli, per le persone a contatto con il prodotto</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Le persone suddette si sottopongano al lavaggio delle mani: prima dell'inizio del lavoro, dopo l'uso dei servizi igienici, dopo mangiato e ogni qualvolta possono essere contaminate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mani e pulizia personale degli addetti alla produzione curate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nelle aree produttive non ammesso fumare, mangiare, bere, masticare gomma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non ammessa la pratica di azioni antisanitarie del tipo dita nel naso o in bocca, ecc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di gioielli, monili, ecc. indossati</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I visitatori, i manutentori, ecc. seguono le stesse norme degli addetti alla produzione quando sono nelle aree di processo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Addestramento del personale alle norme igieniche</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presenza di cartellonistica sulle norme igieniche affissi all'entrata delle zone di lavoro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distinzione degli abiti per il personale operanti nelle aree pulite da quelli delle aree sporche</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Divieto al personale operante nelle aree sporche di passare nelle zone pulite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assenza di tasche, bottoni, ecc. nei camici</td>
<td></td>
</tr>
</tbody>
</table>
Allegato II

Corrispondenza tra i requisiti riportati nell’allegato del D.L. n.155 e le azioni applicabili in un laboratorio di gelateria artigianale.

<table>
<thead>
<tr>
<th>Allegato del D.L. n.155/97</th>
<th>Azioni da intraprendere per soddisfare i requisiti del D.L. n. 155/97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capitolo I
Requisiti generali per i locali (diversi da quelli precisati al capitolo III)</td>
<td>Requisiti generali per i laboratori di produzione (diversi da quelli precisati nel capitolo III)</td>
</tr>
<tr>
<td>1. I locali devono essere tenuti puliti, sottoposti a manutenzione e tenuti in buone condizioni.</td>
<td>La cucina, il magazzino, il locale di vendita e i servizi sono sottoposti a pulizia e manutenzione secondo le modalità definite dai programmi relativi. Queste procedure devono essere qualificate, si deve verificare l’efficacia mediante verifiche periodiche. Queste attività vengono regolarmente registrate.</td>
</tr>
<tr>
<td>2. Lo schema, la progettazione, la costruzione e le dimensioni dei locali nei quali si trovano prodotti alimentari devono: 2.1. consentire un'adeguata pulizia e/o disinfezione;</td>
<td>Opportuna è la presenza di locali atti alla ricezione e stoccaggio delle materie prime, una cucina per la miscelazione e preparazione degli ingredienti e dei prodotti finiti separati dall’area per la vendita al dettaglio, uno spogliatoio e i servizi igienici. I locali devono essere sufficientemente ampi, tali da evitare l’ingombro di attrezzature e affollamento del personale. L’ubicazione delle attrezzature deve seguire il percorso logico della preparazione del prodotto e permettere una facile rimozione dei residui, la detersione e la disinfezione. I</td>
</tr>
</tbody>
</table>
2.2. essere tali da impedire l'accumulo di sporczia e il contatto con materiali tossici, la penetrazione di particelle nei prodotti alimentari e, per quanto fattibile, la formazione di condensa o muffa indesiderabile sulle superfici; mobili in acciaio inox non devono essere chiusi fino a terra ma essere rialzati da piedini di almeno 15 cm. Sono riportate nel manuale a titolo di esempio le piante in scala di due diversi allestimenti del laboratorio di produzione. L’accumulo di sporczia e la penetrazione di particelle nelle miscele e nei prodotti finiti vengono impediti dall’utilizzo di materiali idonei e dalla applicazione del programma di manutenzione periodica alle strutture. Questi materiali devono essere approvati e non devono rilasciare sostanze tossiche nelle condizioni di lavorazione. Negli ambienti è importante mantenere un adeguato rapporto tra umidità e temperatura al fine di impedire lo sviluppo di muffe e di condensa, e di consentire di lavorare in condizioni di benessere ambientale. E’ necessario predisporre un armadio o un locale per il deposito di sostanze tossiche utilizzate per la pulizia e disinfezione.

2.3. consentire una corretta prassi igienica impedendo anche la contaminazione crociata, durante le operazioni, fra prodotti alimentari, apparecchiatura, materiali, acqua, ricambio d’aria o interventi del personale ed escludendo agenti esterni di contaminazione quali insetti e altri animali nocivi; Per rispondere a questi requisiti è necessario definire i percorsi delle materie prime rispetto i percorsi finiti, evitare di utilizzare per questi le stesse apparecchiature, utensili e frigoriferi ed organizzare il lavoro in maniera tale da seguire un percorso logico che prevenga la contaminazione crociata. E’ importante a questo scopo dimensionare il numero e le caratteristiche delle apparecchiature in conformità alle produzioni che si vogliono ottenere, ed evitare di utilizzare gli utensili per le materie prime anche per i prodotti finiti. L’aria ambientale è un parametro importante da tenere in considerazione in quanto fa parte della composizione del gelato: pertanto devono essere predisposte tutte le misure preventive necessarie ad evitare contaminazioni con il prodotto, quali le reti antiinsetto ed eventualmente la presenza di una sovrappressione nel locale di produzione
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4. fornire, ove necessario, adeguate condizioni di temperatura per la lavorazione e l'immagazzinamento igienici dei prodotti.</td>
<td></td>
</tr>
</tbody>
</table>
E’ necessario il condizionamento dei locali per permettere di lavorare in condizioni igieniche e ambientiali appropriate. Le condizioni di stoccaggio delle materie prime riguardano i prodotti freschi che necessitano di ambienti freschi e asciutti, i prodotti da conservare in frigorifero a temperature positive e i congelati e surgelati. Importante è il corretto dimensionamento delle unità preposte alla conservazione e stoccaggio dei prodotti che richiedono temperature di conservazione più basse di quelle ambientali in modo tale da evitare le contaminazioni crociate, la riduzione delle capacità refrigeranti e l’impossibilità di applicare le procedure di pulizia e manutenzione. |
| 3. **Devono essere disponibili un sufficiente numero di lavabi, adeguatamente collocati e indicati per lavarsi le mani. Gabinetti disponibili in numero sufficiente devono essere collegati ad un buon sistema di scarico. I gabinetti non devono dare direttamente sui locali di manipolazione degli alimenti.** |
Deve essere presente un lavabo nel locale di produzione e uno presso i servizi, a seconda della dimensione del laboratorio e dal numero di persone. I servizi non devono comunicare direttamente con la cucina ma essere collegati ad un antibagno o spogliatoio. |
| 4. **I lavabi devono disporre di acqua corrente fredda e calda, materiale per lavarsi le mani e un sistema igienico di asciugatura. Ove necessario, gli impianti per il lavaggio dei prodotti alimentari devono essere separati dai lavabi.** |
Nel locale di produzione deve essere posizionato almeno un lavabo provvisto di acqua calda e fredda per il lavaggio delle mani, delle materie prime e delle attrezzature. I servizi devono essere dotati di almeno un lavabo comandato non manualmente. Ognuno di questi deve essere fornito di prodotti per la pulizia e/o disinfezione nonché di monouso per asciugare le mani. |
| 5. **Si deve assicurare una corretta aerazione meccanica o naturale, evitando il flusso meccanico di aria da una zona contaminata verso una o l’installazione di filtri idonei. Queste attrezzature devono essere sottoposte ad un programma di manutenzione periodico e registrato.** |
Nella definizione del tipo di locale è opportuno definire e distinguere le aree sporche (servizi, magazzino materie prime, spogliatoio) da quelle pulite (locale 126
zona pulita. I sistemi di aerazione devono essere tali da permettere un accesso agevole ai filtri e alle altre parti che devono essere puliti o sostituiti.

6. Tutti gli impianti sanitari che si trovano nei locali dove si lavorano gli alimenti devono disporre di un buon sistema di aerazione, naturale o meccanico.

7. Nei locali devono esserci un’adeguata illuminazione, naturale o artificiale.

8. Gli impianti di scarico devono essere adatti allo scopo, nonché, progettati e costruiti in modo da evitare il rischio di contaminazione dei prodotti alimentari.

9. Ove necessario, devono essere previste installazioni adatte adibite a spogliatoio per il personale.

<table>
<thead>
<tr>
<th>Capitolo II</th>
<th>Requisiti del laboratorio (o cucina) di gelateria artigianale</th>
</tr>
</thead>
</table>

Requisiti specifici all'interno dei locali in cui i prodotti alimentari vengono preparati, lavorati o trasformati (esclusi i locali adibiti a mensa e quelli specificati nel capitolo III)

1. Nei locali dove i prodotti alimentari sono preparati, lavorati o trasformati (esclusi i locali adibiti a mensa):

1.1. i pavimenti devono essere mantenuti in buone condizioni, essere facili da pulire e ove necessario da disinfettare. Ciò richiede l’impiego di materiale resistente, non assorbente, produzione, locale per la vendita diretta). Il flusso di aria contaminata dalle zone sporche a quelle pulite può essere evitato mediante un’areazione forzata oppure l’applicazione di una sovrappressione nelle aree pulite, ponendo attenzione alla chiusura delle porte. La progettazione dei servizi deve prevedere la presenza di finestre o di sistemi di aerazione che assicurino circa 6 ricambi/ora. Deve essere prevista una illuminazione adeguata che non alteri i colori e tale da garantire 220 Lux in tutte le aree di lavoro ed almeno 540 Lux nei punti ove si effettua un’ispezione del prodotto e delle materie prime. E’ consigliata la presenza di spogliatoi forniti di armadietti personali a doppio scomparto per differenziare gli abiti di casa da quelli di lavoro.

Il diametro minimo degli scarichi deve essere dimensionato a seconda delle portate di liquido da defluire. In ogni caso il diametro del tubo non dev’essere inferiore a 10 cm e munito di sifone che impedisca l’entrata di parassiti nei locali. Il pavimento del laboratorio deve essere impermeabile, liscio e al contempo non scivoloso, e resistente al carico dei macchinari presenti. Importante è la sua manutenzione a determinate frequenze per evitare il verificarsi di fessurazioni e porosità
lavabile e non tossico, a meno che gli operatori alimentari non dimostrino all'autorità competente che altri tipi di materiali possano essere impiegati appropriatamente. Ove opportuno la superficie dei pavimenti deve assicurare un sufficiente scorrimento; difficili da sanificare. Questa attività dev’essere registrata. E’ consigliata la presenza di una certa pendenza presso i mantecatori, pastorizzatori e i maturatori al fine di agevolarne le operazioni di pulizia e sanificazione e impedire ristagni. Le griglie e i sifoni devono disporre di sistemi atti ad impedire l’ingresso di parassiti e infestanti. Le giunzioni tra pareti e pavimenti devono essere arrotondate.

<table>
<thead>
<tr>
<th>1.2. le pareti devono essere mantenute in buone condizioni ed essere facili da pulire e ove necessario da disinfettare. Ciò richiede l'impiego di materiale resistente, non assorbente, lavabile e non tossico e una superficie liscia fino ad un'altezza opportuna per le operazioni, a meno che gli operatori alimentari non dimostrino all'autorità competente che altri tipi di materiali possono essere impiegati appropriatamente; Le pareti devono essere costituite di materiale liscio e lavabile e rivestite per circa 2 metri con materiale impermeabile. E’ importante anche in questo caso la manutenzione ordinaria frequenza definita.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3. i soffitti e le attrezzature sopranelevate devono essere progettati, costruiti e rifiniti in modo da evitare l'accumulo di sporczia e ridurre la condensa, la formazione di muffe indesiderabili e lo spargimento di particelle; Il soffitto non deve essere di materiale poroso per non dar luogo a gocciolamenti. Evitare se possibile la presenza di cavi e tubature, mentre le lampade per l’illuminazione devono possedere dispositivi di protezione al fine di impedire la contaminazione dei prodotti nel caso di rotture.</td>
</tr>
<tr>
<td>1.4. le finestre e le altre aperture devono essere costruite in modo da impedire l'accumulo di sporczia e quelle che possono essere aperte verso l'esterno devono essere se necessario munite di reti antinsetti facilmente amovibili per la pulizia. Qualora l'apertura di finestre provochi contaminazioni Assenza di davanzali interni oppure se presenti inclinati di circa 45°. Verificare periodicamente lo stato delle reti antiinsetto.</td>
</tr>
</tbody>
</table>
di alimenti, queste devono restare chiuse e bloccate durante la produzione;

1.5. le porte devono avere superfici facilmente pulibili e se necessario disinfettabili e a tale fine si richiedono superfici lisce e non assorbenti, a meno che gli operatori alimentari non dimostrino all'autorità... competente che altri tipi di materiali utilizzati sono adatti allo scopo; E’ importante la pulizia delle porte e la loro chiusura per la separazione del locale di produzione dalle aree definite sporche (servizi, magazzino, spogliatoi).

1.6. i piani di lavoro (comprese le superfici degli impianti) a contatto con gli alimenti devono essere mantenuti in buone condizioni ed essere facili da pulire e se necessario da disinfettare. A tal fine si richiedono materiali lisci, lavabili e in materiale non tossico, a meno che gli operatori alimentari non dimostrino all'autorità competente che altri tipi di materiali utilizzati sono adatti allo scopo. Si consiglia di utilizzare l’acciaio inox per i piani di lavoro. Per la pulizia si utilizza un detergente non abrasivo ed eventualmente un disinfettante. Non siliconare i mobili alle pareti in modo tale da poterli allontanare facilmente dalle pareti e così facilitare la pulizia.

2. Se necessario, si devono prevedere opportune disposizioni per la pulizia e la disinfezione degli strumenti di lavoro e degli impianti, i quali devono essere in materiale resistente alla corrosione, facili da pulire e avere una adeguata erogazione di acqua calda e fredda. Gli strumenti di lavoro, le attrezzature e gli impianti devono essere detersi con sostanze in grado di sospendere ed allontanare i residui alimentari solubili ed insolubili in acqua. Si possono usare acidi per la rimozione di sali e zuccheri, alcali per emulsionare e saponificare i grassi e rimuovere le proteine, chelanti per la solubilizzazione dei residui minerali e tensioattivi per la sospensione e rimozione dello sporco. Verificare la facilità di pulizia degli impianti e delle attrezzature.

3. Ove opportuno, si devono prevedere adeguate disposizioni per le necessarie operazioni di lavaggio E’ necessario il lavaggio della frutta fresca nei lavelli del locale di produzione. L’acqua utilizzata deve essere potabile e la
degli alimenti. Ogni acquaio o impianto analogo previsto per il lavaggio degli alimenti deve disporre di un'adeguata erogazione di acqua potabile calda e/o fredda onde poter essere mantenuti puliti. La temperatura massima raggiungibile deve essere compresa tra i 50°C e i 60°C.

Capitolo III

Requisiti per i locali mobili e/o temporanei (quali padiglioni, chioschi di vendita, banchi di vendita autotrasportati), locali utilizzati principalmente come abitazione privata, locali utilizzati occasionalmente a scopo di approvvigionamento e distributori automatici

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I locali e i distributori automatici debbono essere situati, progettati e costruiti nonché, mantenuti puliti e sottoposti a regolare manutenzione in modo tale da evitare, per quanto ragionevolmente possibile, rischi di contaminazione degli alimenti e di annidamento di agenti nocivi.</td>
<td>Il gelato artigianale può essere distribuito utilizzando i banchi di vendita autotrasportati e i chioschi di vendita. Si possono trovare nelle gelaterie dei prodotti tipo yogurt gelato o gelato espresso che sono distribuiti da apparecchiature che conservano le miscele e distribuiscono il prodotto finito automaticamente. Anche se non si tratta di gelato artigianale vero e proprio si riportano i requisiti della direttiva integrati da alcune indicazioni.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2. In particolare e laddove necessario:</td>
<td></td>
</tr>
<tr>
<td>2.1. devono essere disponibili appropriate attrezzature per mantenere un'adeguata igiene personale (compresi impianti igienici per lavarsi e asciugarsi le mani, attrezzature igienico-sanitarie e locali adibiti a spogliatoi);</td>
<td>E’ necessaria la possibilità di lavare gli impianti e le attrezzature, oppure per i banchi autotrasportati la pulizia ed eventualmente la sostituzione degli utensili deve essere effettuata spesso, in relazione alle condizioni ambientali.</td>
</tr>
<tr>
<td>2.2. le superfici in contatto col cibo devono essere in buone condizioni e facilmente lavabili e se necessario disinfettabili. A tale fine si richiedono materiali lisci, lavabili e non tossici, a meno che gli operatori alimentari non</td>
<td>Verificare che gli impianti utilizzati siano facilmente pulibili ed eventualmente disinfettabili in ogni loro parte.</td>
</tr>
<tr>
<td>2.3.</td>
<td>La frequenza della pulizia e disinfezione è influenzata dalle condizioni ambientali ma in ogni caso deve essere effettuata il più spesso possibile.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2.4.</td>
<td>Laddove si preparino le miscele soprattutto utilizzando prodotti freschi è necessaria la presenza di un lavello.</td>
</tr>
<tr>
<td>2.5.</td>
<td>lavello deve essere fornito di acqua potabile calda e fredda.</td>
</tr>
<tr>
<td>2.6.</td>
<td>L’accumulo dei residui della lavorazione e il loro smaltimento deve essere effettuato in contenitori periodicamente lavati e muniti di sacchi impermeabili e almeno giornalmente sostituiti.</td>
</tr>
<tr>
<td>2.7.</td>
<td>Le dimensioni ed il numero di frigoriferi necessari devono essere calcolate tenendo presente il carico e la capacità di raffreddare adeguatamente i prodotti.</td>
</tr>
<tr>
<td>2.8.</td>
<td>i prodotti alimentari devono essere collocati in modo da evitare, per quanto ragionevolmente possibile, i rischi di contaminazione.</td>
</tr>
</tbody>
</table>
| **Capitolo IV**
Trasporto | Può comprendere il trasporto delle materie prime e dei semilavorati come il trasferimento al luogo di distribuzione e vendita dei prodotti finiti. |
| **1.** | Verificare lo stato di pulizia e manutenzione dei mezzi e dei contenitori adibiti al trasporto di materie prime e prodotti finiti. |
| --- | In particolare devono essere assenti percolati, odori sgradevoli, sviluppo di muffe, residui di detergenti e sanificanti ed evidenti desquamazioni e fessurazioni delle pareti interne. |
modo tale da consentire un'adeguata pulitura e disinfezione.

Le confezioni e gli imballaggi devono essere inviati in un involucro che li protegga da eventuali danni durante il trasporto e per assicurare il magazzinamento in condizioni igieniche.
Per i contenitori riutilizzabili è opportuno stabilire le modalità di pulizia e manutenzione a determinate frequenze. La contaminazione può provenire anche dai residui della pulizia dovuti ad un risciacquo inadeguato.

| 2. Salvo quanto previsto al capitolo IV
| A i vani di carico dei veicoli o i contenitori non debbono essere utilizzati per trasportare materiale diverso dagli alimenti poiché, questi ultimi possono risultare contaminati. Gli alimenti sfusi liquidi, granulari o in polvere devono essere trasportati in vani di carico o contenitori/cisterne riservati al trasporto di prodotti alimentari. Sui contenitori deve essere apposta una menzione chiaramente visibile ed indelebile in una o più lingue comunitarie relativa alla loro utilizzazione per il trasporto di prodotti alimentari ovvero la menzione “esclusivamente per prodotti alimentari”.
| 3. Se i veicoli o i contenitori sono adibiti al trasporto di altra merce in aggiunta agli alimenti o di differenti tipi di alimenti contemporaneamente, si deve provvedere a separare in maniera efficace i vari prodotti ove necessario per impedire il rischio di contaminazione.
| 4. Se i veicoli o i contenitori sono adibiti al trasporto di merci che non siano prodotti alimentari o di differenti tipi di prodotti alimentari,

Verificare la presenza di altri prodotti nei mezzi adibiti al trasporto delle materie prime, soprattutto se si tratta di sostanze estranee, fonti di possibili contaminazioni. Anche i recipienti utilizzati durante il trasporto devono essere sottoposti ad una verifica del loro stato igienico.
<table>
<thead>
<tr>
<th>Capitolo V</th>
<th>Apparecchiature ed impianti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requisiti per l'apparecchiatura</td>
<td></td>
</tr>
<tr>
<td>1. Tutto il materiale, l'apparecchiatura e le attrezzature che vengono a contatto degli alimenti devono essere mantenuti puliti e</td>
<td>Devono essere definite delle procedure per la pulizia e la manutenzione degli impianti e delle apparecchiature. Queste procedure necessitano di verifiche periodiche (qualifica) a cadenze da stabilire anche qualora intervenga un cambiamento nelle attrezzature, nelle modalità di svolgimento oppure nei parametri adottati. All’acquisto verificare la facilità di pulizia di impianti ed attrezzature e conservare il manuale d’istruzione se è disponibile. Per gli impianti frigoriferi stipulare dei contratti di assistenza oppure concordare con il fornitore le modalità di manutenzione ordinaria.</td>
</tr>
<tr>
<td>1.1. essere progettati e costruiti in materiale tale da rendere minimi, se mantenuti in buono stato e sottoposti a regolare manutenzione, i rischi di contaminazione degli alimenti;</td>
<td></td>
</tr>
<tr>
<td>1.2. ad eccezione dei contenitori e degli imballaggi a perdere, devono essere progettati e costruiti in materiale tale che, se mantenuti in buono stato e sottoposti a regolare</td>
<td>Devono resistere al lavaggio acido e basico e alle temperature previste dalla procedura di pulizia. Importante è la verifica dello stato di usura di guarnizioni soggette ad indurimento e screpolature.</td>
</tr>
<tr>
<td>5. I prodotti alimentari nei veicoli o contenitori devono essere collocati e protetti in modo da rendere minimo il rischio di contaminazione.</td>
<td>E’ necessario specificare le modalità di imballaggio e protezione dei prodotti che possono subire danni durante il trasporto, soprattutto le uova fresche e i prodotti racchiusi in contenitori fragili.</td>
</tr>
<tr>
<td>6. Laddove necessario, i veicoli o i contenitori utilizzati per trasportare gli alimenti debbono poter mantenere questi ultimi in condizioni adeguate di temperatura e, se del caso, essere progettati in modo che la temperatura possa essere controllata.</td>
<td>E’ consigliato verificare la temperatura di arrivo delle materie prime e il loro stato di conservazione. Per il controllo delle temperature durante il trasporto possono essere impiegati i termometri con registrazione della temperatura in continuo.</td>
</tr>
</tbody>
</table>
manutenzione restino sempre assolutamente puliti e, se necessario, sufficientemente disinfettati in funzione degli scopi previsti;

1.3. essere installati in modo da consentire un'adeguata pulizia dell'area circostante.

Tutti gli impianti devono poter essere spostati dalle pareti per la loro completa pulizia e per quella dell’ambiente di lavoro. Anche le caratteristiche stesse degli impianti e delle attrezzature devono facilitare l’opera di pulizia e disinfezione se necessaria.

Capitolo VI

Residui alimentari

1. I residui alimentari e altri scarti non devono essere ammucchiati nelle aree di trattamento degli alimenti tranne se ciò sia inevitabile ai fini di un corretto funzionamento dell'industria alimentare.

Tutti gli impianti devono poter essere spostati dalle pareti per la loro completa pulizia e per quella dell’ambiente di lavoro. Anche le caratteristiche stesse degli impianti e delle attrezzature devono facilitare l’opera di pulizia e disinfezione se necessaria.

Residui della lavorazione

Si devono predisporre dei contenitori atti alla raccolta dei residui della lavorazione. Allo svuotamento giornaliero dei contenitori deve seguire una pulizia e disinfezione periodica di detti contenitori.

2. I residui alimentari e altri scarti devono essere depositati in contenitori chiudibili a meno che gli operatori alimentari non dimostrino all'autorità competente che altri tipi di contenitori utilizzati sono adatti allo scopo. Questi contenitori devono essere costruiti in modo adeguato, mantenuti in buone condizioni igieniche e ove necessario essere facilmente pulibili e disinfettabili.

I contenitori utilizzati devono essere muniti di coperchio apribile non manualmente e dotato di sacco impermeabile intercambiabile.

3. Si devono prevedere opportune disposizioni per la rimozione e il deposito dei residui alimentari e di altri scarti. Le aree di deposito dei rifiuti devono essere tali da poter essere mantenute facilmente pulite e da impedire l’accesso di insetti e di altri animali nocivi e la contaminazione dei prodotti alimentari, dell’acqua potabile, degli impianti o locali.

eventuali depositi di residui separati da materie prime e prodotti finiti. relativi contenitori utilizzati devono essere chiaramente riconoscibili.

Capitolo VII

Qualità dell’acqua impiegata
Rifornimento idrico

1. **Il rifornimento di acqua potabile deve essere adeguato**, come specificato nel D.P.R. 24 maggio 1988, n. 236, concernente la qualità delle acque destinate al consumo umano, e usato, ove necessario, per garantire che gli alimenti non siano contaminati.

 L’acqua può essere considerata una materia prima in quanto entra direttamente nella composizione del gelato artigianale. Si consiglia quindi di effettuare dei controlli di tipo microbiologico e chimico in aggiunta a quelli svolti dagli enti di gestione degli acquedotti pubblici.

2. **Ove opportuno, il ghiaccio deve essere prodotto con acqua conforme alle specifiche di cui al D.P.R. 24 maggio 1988, n. 236** e deve essere impiegato, ognialvolta necessario, in modo tale da garantire che i prodotti alimentari non siano contaminati. Deve essere fabbricato, maneggiato e conservato in modo da evitare ogni possibile contaminazione.

3. **Il vapore direttamente a contatto con i prodotti alimentari non deve contenere alcuna sostanza che presenti un rischio per la salute o possa contaminare il prodotto.**

4. **L’acqua non potabile adoperata per la produzione di vapore, la refrigerazione, i sistemi antincendio e altri scopi analoghi non concernenti gli alimenti deve passare in condotte separate, facilmente individuabili e prive di alcun raccordo o possibilità di rifiussi rispetto al sistema di acqua potabile.**

Capitolo VIII

Igiene personale

1. **Ogni persona che lavora in locali per il trattamento di prodotti alimentari deve mantenere uno standard elevato di pulizia personale**

 Il personale che lavora nel laboratorio artigianale deve disporre di un armadietto a doppio scomparto per riporre separatamente gli indumenti da casa e da lavoro. La pulizia...
ed indossare indumenti adeguati, puliti e, se del caso, protettivi.

2. Nessuna persona riconosciuta o sospetta di essere affetta da malattia o portatrice di malattia trasmissibile attraverso gli alimenti o che presenti, per esempio, ferite infette, infezioni della pelle, piaghe o soffra di diarrea può essere autorizzata a lavorare in qualsiasi area di trattamento degli alimenti, a qualsiasi titolo qualora esista una probabilità, diretta o indiretta di contaminazione degli alimenti con microrganismi patogeni.

E’ necessaria la presenza del libretto sanitario aggiornato.
Per il personale che lavora nel laboratorio di gelateria si applicano le disposizioni contenute nel D.P.R. 20 marzo 1980, n. 327, e successive modifiche.

<table>
<thead>
<tr>
<th>Capitolo IX</th>
<th>Disposizioni applicabili ai prodotti della gelateria artigianale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposizioni applicabili ai prodotti alimentari</td>
<td></td>
</tr>
</tbody>
</table>

1. Un’impresa alimentare non deve accettare materie prime o ingredienti se risultano contaminati, o si può logicamente presumere che siano contaminati, da parassiti, microrganismi patogeni o tossici, decomposti o sostanze estranee che, anche dopo le normali operazioni di cernita o le procedure preliminari o di trattamento eseguite in maniera igienica, non siano adatte al consumo umano.

2. Le materie prime e gli ingredienti immagazzinati nello stabilimento devono essere opportunamente conservati in modo da evitare un deterioramento nocivo e la contaminazione.

Si deve verificare lo stato di conservazione e trasporto delle materie prime per quanto riguarda la data di scadenza, le temperature richieste, l’integrità della confezioni, le condizioni di trasporto e l’assenza di evidenti segni di contaminazione o deperimento. E’ importante stabilire con i fornitori le modalità di consegna delle materie prime e di trasporto dei prodotti finiti.

Si devono predisporre dei locali asciutti e freschi per lo stocaggio delle materie prime fresche e quelle che non richiedono particolari condizioni di conservazione, dei frigoriferi a temperatura positiva e frigoriferi a temperature negative. Queste apparecchiature devono essere soggette a manutenzione programmata e registrata, come pure ad un programma di pulizia e sanificazione. Il dimensionamento di armadi frigo, celle e frigoriferi dipende dai quantitativi di prodotti da stoccare e deve prevedere la possibilità di effettuare
agevolmente le operazioni di pulizia e manutenzione.
Allo scopo di preservare gli alimenti dal pericolo di contaminazioni da infestanti si devono predisporre dei programmi di intervento atti alla prevenzione e all’eventuale rapida eliminazione degli animali. Le sostanze utilizzate devono essere conservate separatamente in un armadio chiuso in modo tale da non costituire un pericolo di contaminazione dei prodotti.

3. **Tutti gli alimenti manipolati, immagazzinati, imballati, collocati e trasportati**, devono essere protetti da qualsiasi forma di contaminazione atta a renderli inadatti al consumo umano, nocivi per la salute o contaminati in modo tale da non poter essere ragionevolmente consumati in tali condizioni. In particolare, gli alimenti devono essere collocati e protetti in modo da ridurre al minimo qualsiasi rischio di contaminazione. Devono essere previsti procedimenti appropriati per garantire il controllo degli agenti nocivi.

 I rischi di contaminazione sono prevenuti mediante l’adozione di efficaci procedure di pulizia dei contenitori e dei frigoriferi e inoltre dell’applicazione di un programma di manutenzione ordinaria e straordinaria che impedisca il rialzo termico prolungato dei prodotti finiti.

4. **Le materie prime, gli ingredienti, i prodotti intermedi e quelli finiti, sui quali possono proliferare microrganismi patogeni, o formarsi tossine** devono essere conservati a temperature che non provochino rischi per la sanità pubblica. Compatibilmente con la sicurezza degli alimenti, è permesso derogare al controllo della temperatura per periodi limitati, qualora ciò sia necessario per motivi di praticità durante la preparazione, il trasporto, l’immagazzinamento, l’esposizione e la fornitura, compresa la somministrazione, degli

 La frutta fresca, le cialde, i prodotti trattati termicamente e zuccherati e le sostanze in polvere in genere sono conservate in un luogo fresco, asciutto e aerato. Le uova fresche, i prodotti liquidi pasteurizzati e il burro sono mantenuti a temperature positive in frigorifero. Gli ingredienti congelati o surgelati sono conservati a temperature negative in congelatori e armadi frigo diversi da quelli dove vengono riposti i prodotti finiti. Le confezioni aperte possono essere riposte nel locale di produzione qualora si assicuri il loro utilizzo in pochi giorni mediante l’impiego di recipienti di minore capienza.

I prodotti finiti sono mantenuti nelle
<table>
<thead>
<tr>
<th>Capitolo X</th>
<th>Formazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I responsabili dell’industria alimentare devono assicurare che gli addetti siano controllati e abbiano ricevuto un addestramento e una formazione, in materia di igiene alimentare, in relazione al tipo di attività.</td>
<td>Tutto il personale che lavora nella gelateria deve conoscere ed applicare le buone norme di produzione identificate da questo manuale e deve dimostrare di aver appreso i principi di igiene raccomandatigli in base alla partecipazione ad incontri di formazione programmati.</td>
</tr>
</tbody>
</table>

Bibliografia

1) Training Considerations for the Application of the *Hazard Analysis Critical Control Point System* to Food Processing and Manufacturing - World Health Organization, Division of Food and Nutrition Food Safety Unit, 1993, Document WHO/FNU/FOS/93.3

2) IAMFES - *International Association of Milk, Food and Environmental Sanitarians, Inc.* (1991), Procedures to Implement the *Hazard Analysis Critical Control Point System*

5) Piero De Risi - Progettare in qualità (1996)
6) Claudio Peri - Qualità: concetti e metodi (1994)
7) Baird Parker, The hazard analysis critical control points concept and principles, Bulletin of IDF 276
8) A.Scipioni, D. Andreazza - Il sistema HACCP, Sicurezza e qualità nelle aziende agroalimentari, Ed. Hoepli (1997)
9) Metodi di processo e di controllo degli alimenti, Istituto Scotti Bassani (1994)
10) Luca Caviezel - Scienza e tecnologia del gelato artigianale - Chiriotti Editori 1986
14) SAGI - Sistema Aziendale di Garanzia dell‘Igiene nelle industrie agroalimentari - a cura di Claudio Peri, CSA.
17) FDA - Current Good Manufacturing Practice in Manufacturing, Processing, Packaging, or Holding Human Food - Title 21, Part 110.
20) V.I.S.A.: Valutazione Igienica Stabilimenti Alimentari - A cura dell’Istituto Lattiero Caseario e di Biotecnologie Agroalimentari di Thiene e di AICQ Settore Alimentare.
21) HACCP: piano di autocontrollo dei punti critici nella produzione del gelato - UNITEIS (Unione Gelatieri Artigiani Italiani in Germania).
22) Normativa 1996 su produzione e vendita del gelato - UNITEIS (Unione Gelatieri Artigiani Italiani in Germania).